Python 第3次作业
1. 载入分析所需要的库和模块
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
import matplotlib.pyplot as plt
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
from sklearn import metrics
from sklearn.metrics import RocCurveDisplay
from sklearn.metrics import cohen_kappa_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
2. 数据读取及观察
使用 pandas 库中的 read_csv 函数读取 CSV 文件
data = pd.read_csv('../data/数据5.2.csv')
data.info()
是 Pandas 库中 DataFrame 对象的一个方法,用于打印 DataFrame 的简明摘要信息。该方法会输出以下内容:
- 数据的基本信息,包含索引范围和数据的总行数。
- 每列的信息,包括列名、非空值数量、数据类型。
- 内存使用情况,即该 DataFrame 占用的内存大小。
# 查看数据集的基本信息
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 700 entries, 0 to 699
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 V1 700 non-null int64
1 V2 700 non-null float64
2 V3 700 non-null int64
3 V4 700 non-null int64
4 V5 700 non-null float64
5 V6 700 non-null int64
6 V7 700 non-null int64
dtypes: float64(2), int64(5)
memory usage: 38.4 KB
对数据集的基本信息分析如下:
- 数据量:共有 700 条记录(从索引 0 到 699)。
- 列数:共有 7 列,分别是
V1
,V2
,V3
,V4
,V5
,V6
,V7
。 - 数据类型:
float64
类型:2 列(V2
和V5
)。int64
类型:5 列(V1
,V3
,V4
,V6
,V7
)。
- 内存占用:约 38.4 KB。
所有列均为非空(Non-Null Count 均为 700),说明数据没有缺失值。
# 查看有哪些列
data.columns
Index(['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7'], dtype='object')
# 查看数据形状
data.shape
(700, 7)
# 查看数据类型
data.dtypes
V1 int64
V2 float64
V3 int64
V4 int64
V5 float64
V6 int64
V7 int64
dtype: object
# 查看是否有缺失值
data.isnull().values.any()
False
# 查看缺失值数量
data.isnull().sum()
V1 0
V2 0
V3 0
V4 0
V5 0
V6 0
V7 0
dtype: int64
# 查看前五行数据
data.head()
V1 | V2 | V3 | V4 | V5 | V6 | V7 | |
---|---|---|---|---|---|---|---|
0 | 0 | 20.33 | 3 | 1 | 20.66 | 0 | 0 |
1 | 0 | 36.59 | 1 | 1 | 8.67 | 0 | 1 |
2 | 0 | 34.96 | 2 | 1 | 19.67 | 1 | 0 |
3 | 0 | 26.83 | 1 | 2 | 21.54 | 1 | 1 |
4 | 0 | 21.14 | 4 | 1 | 16.92 | 0 | 1 |
3. 描述性分析
3.1 计算统计各变量的统计指标
针对数据集中各变量计算平均值、标准差、最大值、最小值、四分位数等统计指标,针对连续变量的结果进行解读;
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
data.describe()
V1 | V2 | V3 | V4 | V5 | V6 | V7 | |
---|---|---|---|---|---|---|---|
count | 700.000000 | 700.000000 | 700.000000 | 700.000000 | 700.000000 | 700.000000 | 700.000000 |
mean | 0.261429 | 28.341543 | 2.041429 | 1.501429 | 12.586629 | 0.535714 | 0.445714 |
std | 0.439727 | 6.501841 | 0.947702 | 1.173746 | 7.509957 | 0.499079 | 0.497400 |
min | 0.000000 | 16.260000 | 1.000000 | 1.000000 | 1.740000 | 0.000000 | 0.000000 |
25% | 0.000000 | 23.580000 | 1.000000 | 1.000000 | 6.800000 | 0.000000 | 0.000000 |
50% | 0.000000 | 27.640000 | 2.000000 | 1.000000 | 10.760000 | 1.000000 | 0.000000 |
75% | 1.000000 | 32.520000 | 2.000000 | 1.000000 | 16.837500 | 1.000000 | 1.000000 |
max | 1.000000 | 45.530000 | 5.000000 | 5.000000 | 46.730000 | 1.000000 | 1.000000 |
数据集中的连续变量为V2和V5,对其分析如下:
- V2:数值较大,取值范围广,数据在均值周围有一定波动,分布较为连续且逐步递增。
- V5:取值范围非常大,数据离散程度很高,分布较为分散。
3.2 按照V1变量的取值分组对其他变量开展描述性分析
针对连续变量,通常使用计算平均值、标准差、最大值、最小值、四分位数等统计指标的方式来进行描述性分析;针对分类变量,通常使用交叉表的方式开展分析。
# 按照 V1 变量的取值分组对其他变量开展描述性分析
grouped = data.groupby('V1')
data.groupby('V1').describe().unstack()
V1
V2 count 0 517.000000
1 183.000000
mean 0 28.873694
1 26.838142
std 0 6.266412
1 6.924717
min 0 16.260000
1 16.260000
25% 0 23.580000
1 21.950000
50% 0 28.460000
1 25.200000
75% 0 33.330000
1 31.710000
max 0 45.530000
1 44.720000
V3 count 0 517.000000
1 183.000000
mean 0 2.021277
1 2.098361
std 0 0.909432
1 1.048886
min 0 1.000000
1 1.000000
25% 0 1.000000
1 1.000000
50% 0 2.000000
1 2.000000
75% 0 2.000000
1 2.000000
max 0 5.000000
1 5.000000
V4 count 0 517.000000
1 183.000000
mean 0 1.460348
1 1.617486
std 0 1.119279
1 1.311873
min 0 1.000000
1 1.000000
25% 0 1.000000
1 1.000000
50% 0 1.000000
1 1.000000
75% 0 1.000000
1 1.000000
max 0 5.000000
1 5.000000
V5 count 0 517.000000
1 183.000000
mean 0 10.847234
1 17.500656
std 0 6.176717
1 8.693078
min 0 1.740000
1 2.290000
25% 0 6.250000
1 10.705000
50% 0 9.330000
1 16.480000
75% 0 14.280000
1 22.585000
max 0 37.050000
1 46.730000
V6 count 0 517.000000
1 183.000000
mean 0 0.541586
1 0.519126
std 0 0.498750
1 0.501005
min 0 0.000000
1 0.000000
25% 0 0.000000
1 0.000000
50% 0 1.000000
1 1.000000
75% 0 1.000000
1 1.000000
max 0 1.000000
1 1.000000
V7 count 0 517.000000
1 183.000000
mean 0 0.433269
1 0.480874
std 0 0.496007
1 0.501005
min 0 0.000000
1 0.000000
25% 0 0.000000
1 0.000000
50% 0 0.000000
1 0.000000
75% 0 1.000000
1 1.000000
max 0 1.000000
1 1.000000
dtype: float64
从 count
行数据可知,两组数据的样本量不同,0 组样本量为 517,1 组样本量为 183。
变量 | 分析维度 | V1=0 的数据 | V1=1 的数据 | 分析结论 |
---|---|---|---|---|
V2 | 均值 | 28.873694 | 26.838142 | 0 组均值略高于 1 组 |
V2 | 标准差 | 6.266412 | 6.924717 | 1 组数据相对更分散 |
V2 | 最值 | 最小值:16.260000,最大值略高 | 最小值:16.260000,最大值略低 | 两组最小值相同,0 组最大值略高于 1 组 |
V3 | 均值 | 2.021277 | 2.098361 | 两组均值都接近 2 |
V3 | 分布 | 大部分集中在 1 - 2 之间 | 大部分集中在 1 - 2 之间 | 从 25% - 75% 分位数来看,两组数据分布较为集中 |
V4 | 分布集中 | 大部分分位数(25% - 75%)的值为 1 | 大部分分位数(25% - 75%)的值为 1 | 数据集中在 1 附近 |
V4 | 均值 | 低于 1 组 | 略高于 0 组 | 1 组均值略高于 0 组 |
V5 | 均值差异 | 10.847234 | 17.500656 | 1 组均值明显高于 0 组 |
V5 | 离散程度 | 6.176717 | 8.693078 | 1 组数据更分散 |
V6 和 V7 | 二值特征 | 取值范围 0 - 1 | 取值范围 0 - 1 | 推测可能是二值特征 |
V6 和 V7 | 分布 | 分位数有较多重合,标准差接近 0.5 | 分位数有较多重合,标准差接近 0.5 | 数据在 0 和 1 上分布较为均衡 |
3.3 对V1和V3变量进行交叉表分析
交叉表分析是描述统计的一种,分析特色是将数据按照行变量、列变量进行描述统计。在 Pandas 里,pd.crosstab
函数可用于创建交叉表,用于展示两个或多个分类变量之间的频数分布。
# 使用交叉表分析 “V1是否购买本次推广产品” 和 “V3年收入水平”
pd.crosstab(data.V3, data.V1)
V1 | 0 | 1 |
---|---|---|
V3 | ||
1 | 139 | 59 |
2 | 293 | 79 |
3 | 24 | 14 |
4 | 57 | 30 |
5 | 4 | 1 |
样本客户主要集中在V3 级别 1 和 级别 2,表明推广活动主要触达的是这两个收入区间的群体。
- 级别 2 的人数最多(372 人,占总数的 ≈53.1%)。
- 级别 1 其次(198 人,占总数的 ≈28.3%)。
- 级别 5 的样本量极小(仅 5 人)。
为了衡量收入水平对购买决策的影响,可以计算每个收入级别的购买率(即已购买人数占该级别总人数的比例)。
V3 (收入级别) | 总人数 | 购买人数 (V1=1) | 购买率 (转化率) |
---|---|---|---|
1 | 198 | 59 | 59/198≈29.8% |
2 | 372 | 79 | 79/372≈21.2% |
3 | 38 | 14 | 14/38≈36.8% |
4 | 87 | 30 | 30/87≈34.5% |
5 | 5 | 1 | 1/5=20.0% |
# 查看“V3年收入水平”和“V1是否购买本次推广产品”的交叉表, normalize='index' 表示按行归一化
pd.crosstab(data.V3, data.V1, normalize='index')
V1 | 0 | 1 |
---|---|---|
V3 | ||
1 | 0.702020 | 0.297980 |
2 | 0.787634 | 0.212366 |
3 | 0.631579 | 0.368421 |
4 | 0.655172 | 0.344828 |
5 | 0.800000 | 0.200000 |
4. 数据处理
区分分类特征和连续特征并进行处理,对分类特征设置虚拟变量,对连续特征进行标准化处理;
def data_encoding(data):
# 选取指定列的数据
data = data[["V1", "V2", "V3", "V4", "V5", "V6", "V7"]]
# 定义离散特征和连续特征
discrete_feature = ["V3"]
continuous_feature = ["V2", "V5", "V4", "V6", "V7"]
# 对离散特征进行独热编码
df = pd.get_dummies(data, columns=discrete_feature)
# 对连续特征进行标准化处理
df[continuous_feature] = (df[continuous_feature] - df[continuous_feature].mean()) / df[continuous_feature].std()
# 将 V1 列添加回处理后的数据框
df["V1"] = data[["V1"]]
return df
data = data_encoding(data)
data
V1 | V2 | V4 | V5 | V6 | V7 | V3_1 | V3_2 | V3_3 | V3_4 | V3_5 | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | -1.232196 | -0.427204 | 1.075022 | -1.073405 | -0.896089 | False | False | True | False | False |
1 | 0 | 1.268634 | -0.427204 | -0.521525 | -1.073405 | 1.114367 | True | False | False | False | False |
2 | 0 | 1.017936 | -0.427204 | 0.943197 | 0.930284 | -0.896089 | False | True | False | False | False |
3 | 0 | -0.232479 | 0.424769 | 1.192200 | 0.930284 | 1.114367 | True | False | False | False | False |
4 | 0 | -1.107616 | -0.427204 | 0.577017 | -1.073405 | 1.114367 | False | False | False | True | False |
5 | 0 | 1.268634 | -0.427204 | -1.195297 | 0.930284 | -0.896089 | False | True | False | False | False |
6 | 0 | -0.607758 | -0.427204 | 0.035070 | 0.930284 | -0.896089 | False | True | False | False | False |
7 | 0 | -0.983036 | -0.427204 | -0.624055 | 0.930284 | 1.114367 | False | False | False | True | False |
8 | 0 | -1.232196 | 0.424769 | 0.606311 | 0.930284 | -0.896089 | False | True | False | False | False |
9 | 0 | -1.232196 | -0.427204 | -1.078119 | 0.930284 | -0.896089 | False | True | False | False | False |
10 | 0 | -1.107616 | -0.427204 | 2.305389 | -1.073405 | 1.114367 | True | False | False | False | False |
11 | 0 | -0.607758 | -0.427204 | 0.855314 | -1.073405 | -0.896089 | True | False | False | False | False |
12 | 0 | -0.357059 | -0.427204 | 0.606311 | 0.930284 | -0.896089 | True | False | False | False | False |
13 | 1 | -0.858456 | 0.424769 | 1.001786 | 0.930284 | 1.114367 | True | False | False | False | False |
14 | 0 | 1.268634 | -0.427204 | -0.887705 | -1.073405 | 1.114367 | False | True | False | False | False |
15 | 0 | -1.482894 | -0.427204 | -0.536172 | 0.930284 | -0.896089 | False | True | False | False | False |
16 | 0 | -0.107899 | -0.427204 | -0.331111 | 0.930284 | 1.114367 | False | True | False | False | False |
17 | 0 | 0.893356 | -0.427204 | -0.829116 | 0.930284 | -0.896089 | True | False | False | False | False |
18 | 0 | 0.518077 | -0.427204 | 0.415897 | -1.073405 | 1.114367 | False | True | False | False | False |
19 | 1 | -1.107616 | -0.427204 | -0.404347 | -1.073405 | -0.896089 | False | True | False | False | False |
20 | 0 | -1.733593 | -0.427204 | -0.506878 | 0.930284 | 1.114367 | True | False | False | False | False |
21 | 0 | 0.018219 | 0.424769 | -0.843764 | -1.073405 | -0.896089 | False | True | False | False | False |
22 | 0 | 1.517794 | -0.427204 | 0.020422 | -1.073405 | 1.114367 | False | True | False | False | False |
23 | 1 | -1.482894 | -0.427204 | 0.166895 | -1.073405 | 1.114367 | True | False | False | False | False |
24 | 0 | 0.018219 | -0.427204 | -0.418994 | 0.930284 | -0.896089 | False | True | False | False | False |
25 | 1 | -0.107899 | -0.427204 | 0.342661 | 0.930284 | -0.896089 | False | True | False | False | False |
26 | 0 | 1.393214 | -0.427204 | 0.547722 | 0.930284 | -0.896089 | False | True | False | False | False |
27 | 1 | 1.393214 | -0.427204 | 0.386603 | 0.930284 | 1.114367 | False | True | False | False | False |
28 | 0 | 0.391959 | -0.427204 | -0.960941 | -1.073405 | -0.896089 | False | False | False | True | False |
29 | 0 | 0.642658 | -0.427204 | -0.111403 | -1.073405 | -0.896089 | True | False | False | False | False |
30 | 1 | 0.267379 | -0.427204 | 0.708842 | 0.930284 | 1.114367 | False | True | False | False | False |
31 | 0 | 0.018219 | 0.424769 | -0.770528 | -1.073405 | -0.896089 | False | True | False | False | False |
32 | 0 | 0.518077 | -0.427204 | -1.151355 | -1.073405 | -0.896089 | True | False | False | False | False |
33 | 0 | 0.642658 | -0.427204 | -1.136708 | 0.930284 | 1.114367 | False | False | False | True | False |
34 | 0 | 1.893073 | -0.427204 | 0.284072 | -1.073405 | -0.896089 | False | False | False | True | False |
35 | 0 | -0.483177 | 0.424769 | -1.151355 | 0.930284 | 1.114367 | False | True | False | False | False |
36 | 1 | -0.732338 | -0.427204 | -0.418994 | -1.073405 | -0.896089 | False | True | False | False | False |
37 | 0 | 0.267379 | -0.427204 | 0.313367 | 0.930284 | 1.114367 | False | True | False | False | False |
38 | 0 | -0.232479 | -0.427204 | -0.477583 | -1.073405 | 1.114367 | True | False | False | False | False |
39 | 0 | -1.107616 | -0.427204 | -0.360405 | -1.073405 | -0.896089 | True | False | False | False | False |
40 | 1 | -0.357059 | -0.427204 | 1.909914 | -1.073405 | -0.896089 | True | False | False | False | False |
41 | 1 | -0.858456 | -0.427204 | -0.565466 | 0.930284 | -0.896089 | True | False | False | False | False |
42 | 0 | 0.518077 | -0.427204 | -0.169991 | 0.930284 | -0.896089 | False | True | False | False | False |
43 | 1 | -0.858456 | -0.427204 | -0.301816 | 0.930284 | -0.896089 | True | False | False | False | False |
44 | 1 | -0.732338 | -0.427204 | 1.221495 | -1.073405 | -0.896089 | False | True | False | False | False |
45 | 0 | -0.107899 | -0.427204 | 1.880619 | 0.930284 | -0.896089 | True | False | False | False | False |
46 | 0 | -0.858456 | -0.427204 | 1.983150 | 0.930284 | -0.896089 | True | False | False | False | False |
47 | 0 | 1.517794 | -0.427204 | 0.371956 | 0.930284 | -0.896089 | False | True | False | False | False |
48 | 0 | 1.017936 | 1.276742 | 0.049717 | -1.073405 | 1.114367 | False | False | True | False | False |
49 | 0 | 0.767238 | -0.427204 | -1.253886 | 0.930284 | -0.896089 | False | True | False | False | False |
50 | 0 | 1.517794 | -0.427204 | 1.983150 | 0.930284 | -0.896089 | False | True | False | False | False |
51 | 0 | -1.358314 | -0.427204 | -1.415005 | -1.073405 | 1.114367 | False | True | False | False | False |
52 | 0 | -0.732338 | -0.427204 | -0.521525 | 0.930284 | 1.114367 | False | True | False | False | False |
53 | 0 | -0.232479 | -0.427204 | -1.122061 | -1.073405 | -0.896089 | False | True | False | False | False |
54 | 0 | 0.142799 | -0.427204 | -1.034178 | 0.930284 | 1.114367 | False | True | False | False | False |
55 | 1 | -1.107616 | -0.427204 | 0.035070 | 0.930284 | -0.896089 | False | True | False | False | False |
56 | 0 | -0.483177 | -0.427204 | 0.987139 | 0.930284 | -0.896089 | False | True | False | False | False |
57 | 0 | 0.267379 | -0.427204 | 1.367967 | -1.073405 | -0.896089 | False | True | False | False | False |
58 | 0 | 0.018219 | -0.427204 | 0.108306 | -1.073405 | 1.114367 | False | False | True | False | False |
59 | 0 | -1.107616 | -0.427204 | -0.711939 | 0.930284 | -0.896089 | False | True | False | False | False |
60 | 0 | 0.642658 | -0.427204 | 1.250789 | -1.073405 | -0.896089 | False | True | False | False | False |
61 | 1 | -0.732338 | -0.427204 | 0.313367 | -1.073405 | 1.114367 | True | False | False | False | False |
62 | 0 | 0.267379 | 1.276742 | 2.100328 | -1.073405 | 1.114367 | False | False | False | True | False |
63 | 0 | -0.357059 | -0.427204 | -1.078119 | -1.073405 | 1.114367 | False | True | False | False | False |
64 | 1 | -1.482894 | -0.427204 | 2.554392 | -1.073405 | 1.114367 | True | False | False | False | False |
65 | 0 | -0.357059 | -0.427204 | -0.594761 | 0.930284 | -0.896089 | False | True | False | False | False |
66 | 1 | -1.232196 | 1.276742 | 0.166895 | -1.073405 | -0.896089 | False | True | False | False | False |
67 | 0 | 0.391959 | -0.427204 | 0.049717 | 0.930284 | -0.896089 | False | True | False | False | False |
68 | 1 | -0.357059 | -0.427204 | -0.653350 | 0.930284 | 1.114367 | True | False | False | False | False |
69 | 1 | 0.767238 | -0.427204 | 2.349331 | -1.073405 | 1.114367 | False | False | False | True | False |
70 | 0 | 0.142799 | -0.427204 | -0.858411 | 0.930284 | -0.896089 | False | True | False | False | False |
71 | 0 | 0.893356 | -0.427204 | -1.019530 | 0.930284 | -0.896089 | False | False | False | True | False |
72 | 0 | 0.767238 | -0.427204 | -0.433641 | 0.930284 | 1.114367 | False | True | False | False | False |
73 | 0 | -0.732338 | -0.427204 | -0.580114 | 0.930284 | -0.896089 | True | False | False | False | False |
74 | 1 | 0.391959 | -0.427204 | -0.140697 | -1.073405 | 1.114367 | False | False | False | True | False |
75 | 0 | 0.518077 | -0.427204 | -1.122061 | -1.073405 | 1.114367 | False | True | False | False | False |
76 | 0 | 0.142799 | 1.276742 | -0.287169 | 0.930284 | -0.896089 | False | True | False | False | False |
77 | 0 | -0.232479 | -0.427204 | -0.653350 | -1.073405 | 1.114367 | False | True | False | False | False |
78 | 0 | 0.893356 | -0.427204 | -1.048825 | -1.073405 | 1.114367 | True | False | False | False | False |
79 | 0 | 0.767238 | -0.427204 | 1.953856 | 0.930284 | -0.896089 | True | False | False | False | False |
80 | 0 | 0.642658 | -0.427204 | -0.975589 | -1.073405 | -0.896089 | False | True | False | False | False |
81 | 1 | 2.268351 | -0.427204 | 0.137600 | -1.073405 | 1.114367 | False | True | False | False | False |
82 | 0 | -0.858456 | -0.427204 | 0.474486 | -1.073405 | -0.896089 | False | True | False | False | False |
83 | 0 | 0.142799 | -0.427204 | -0.345758 | -1.073405 | -0.896089 | True | False | False | False | False |
84 | 0 | -0.107899 | -0.427204 | -0.023519 | -1.073405 | -0.896089 | True | False | False | False | False |
85 | 0 | 1.268634 | -0.427204 | -0.785175 | 0.930284 | -0.896089 | False | False | False | True | False |
86 | 0 | 0.391959 | -0.427204 | -0.199286 | 0.930284 | -0.896089 | False | True | False | False | False |
87 | 0 | -1.733593 | -0.427204 | -0.375053 | 0.930284 | 1.114367 | False | False | False | True | False |
88 | 0 | 0.893356 | 2.128715 | 1.631617 | 0.930284 | -0.896089 | False | True | False | False | False |
89 | 0 | 2.143771 | -0.427204 | -0.243228 | 0.930284 | -0.896089 | False | True | False | False | False |
90 | 0 | -1.232196 | -0.427204 | -0.741233 | 0.930284 | 1.114367 | True | False | False | False | False |
91 | 0 | -0.107899 | 2.128715 | -0.594761 | -1.073405 | -0.896089 | True | False | False | False | False |
92 | 0 | 0.642658 | -0.427204 | -1.004883 | 0.930284 | -0.896089 | True | False | False | False | False |
93 | 1 | -0.483177 | -0.427204 | 0.371956 | -1.073405 | -0.896089 | True | False | False | False | False |
94 | 1 | -1.232196 | -0.427204 | -0.521525 | 0.930284 | 1.114367 | False | True | False | False | False |
95 | 0 | 1.268634 | -0.427204 | -0.111403 | -1.073405 | 1.114367 | False | True | False | False | False |
96 | 1 | -1.482894 | -0.427204 | -0.272522 | -1.073405 | -0.896089 | False | True | False | False | False |
97 | 1 | -0.107899 | -0.427204 | 3.667580 | 0.930284 | 1.114367 | False | False | True | False | False |
98 | 1 | -0.483177 | -0.427204 | 0.357308 | 0.930284 | -0.896089 | False | True | False | False | False |
99 | 0 | -0.858456 | -0.427204 | -1.092766 | 0.930284 | 1.114367 | False | True | False | False | False |
100 | 0 | 0.767238 | -0.427204 | -0.858411 | -1.073405 | -0.896089 | False | True | False | False | False |
101 | 1 | 0.518077 | -0.427204 | 0.401250 | -1.073405 | -0.896089 | True | False | False | False | False |
102 | 0 | -0.732338 | -0.427204 | -1.297827 | -1.073405 | -0.896089 | True | False | False | False | False |
103 | 0 | -1.733593 | 2.980688 | -0.184639 | -1.073405 | -0.896089 | False | True | False | False | False |
104 | 0 | 0.767238 | -0.427204 | -0.653350 | 0.930284 | -0.896089 | True | False | False | False | False |
105 | 0 | -1.107616 | -0.427204 | -1.078119 | -1.073405 | -0.896089 | False | False | True | False | False |
106 | 0 | -0.232479 | -0.427204 | 0.386603 | 0.930284 | -0.896089 | False | True | False | False | False |
107 | 0 | 1.268634 | -0.427204 | 1.045728 | 0.930284 | 1.114367 | True | False | False | False | False |
108 | 0 | 0.518077 | 2.128715 | 0.503781 | -1.073405 | -0.896089 | False | True | False | False | False |
109 | 0 | -1.358314 | -0.427204 | -0.580114 | -1.073405 | 1.114367 | False | True | False | False | False |
110 | 0 | -0.732338 | -0.427204 | -1.180650 | 0.930284 | -0.896089 | True | False | False | False | False |
111 | 0 | -0.983036 | -0.427204 | 0.313367 | -1.073405 | -0.896089 | True | False | False | False | False |
112 | 0 | 0.642658 | -0.427204 | -0.638703 | -1.073405 | 1.114367 | False | True | False | False | False |
113 | 0 | -0.732338 | -0.427204 | -0.521525 | -1.073405 | -0.896089 | False | True | False | False | False |
114 | 1 | -0.732338 | -0.427204 | -0.536172 | 0.930284 | -0.896089 | True | False | False | False | False |
115 | 1 | -1.358314 | -0.427204 | 0.840667 | 0.930284 | -0.896089 | False | True | False | False | False |
116 | 1 | -0.983036 | -0.427204 | 1.104317 | -1.073405 | 1.114367 | False | True | False | False | False |
117 | 0 | 0.767238 | -0.427204 | -0.858411 | -1.073405 | -0.896089 | False | False | False | True | False |
118 | 0 | -0.483177 | -0.427204 | -0.169991 | 0.930284 | -0.896089 | False | True | False | False | False |
119 | 0 | 0.767238 | -0.427204 | -0.711939 | 0.930284 | -0.896089 | False | True | False | False | False |
120 | 0 | 0.893356 | -0.427204 | -1.004883 | -1.073405 | 1.114367 | True | False | False | False | False |
121 | 0 | -0.858456 | -0.427204 | 0.313367 | -1.073405 | -0.896089 | False | False | True | False | False |
122 | 0 | -0.607758 | -0.427204 | -0.038166 | 0.930284 | -0.896089 | False | False | True | False | False |
123 | 0 | -0.607758 | -0.427204 | -0.272522 | -1.073405 | 1.114367 | False | True | False | False | False |
124 | 0 | -0.483177 | -0.427204 | -0.331111 | 0.930284 | 1.114367 | False | True | False | False | False |
125 | 0 | 1.268634 | -0.427204 | 1.148258 | -1.073405 | -0.896089 | True | False | False | False | False |
126 | 1 | 1.017936 | -0.427204 | -0.609408 | 0.930284 | -0.896089 | False | True | False | False | False |
127 | 1 | 0.767238 | -0.427204 | -0.140697 | 0.930284 | 1.114367 | False | False | False | True | False |
128 | 0 | -0.983036 | -0.427204 | 1.031081 | 0.930284 | 1.114367 | False | True | False | False | False |
129 | 0 | 0.642658 | -0.427204 | -0.697291 | -1.073405 | -0.896089 | False | True | False | False | False |
130 | 0 | 0.767238 | -0.427204 | -1.078119 | 0.930284 | 1.114367 | False | True | False | False | False |
131 | 1 | -1.358314 | -0.427204 | 1.031081 | -1.073405 | 1.114367 | True | False | False | False | False |
132 | 0 | 0.767238 | -0.427204 | -0.008872 | 0.930284 | -0.896089 | True | False | False | False | False |
133 | 0 | 0.518077 | -0.427204 | 2.979161 | 0.930284 | -0.896089 | False | True | False | False | False |
134 | 0 | 1.017936 | -0.427204 | -0.975589 | -1.073405 | -0.896089 | False | True | False | False | False |
135 | 1 | -1.358314 | -0.427204 | 2.071033 | -1.073405 | 1.114367 | False | True | False | False | False |
136 | 0 | 0.142799 | -0.427204 | 1.382614 | 0.930284 | 1.114367 | False | True | False | False | False |
137 | 0 | -0.983036 | -0.427204 | -1.253886 | -1.073405 | -0.896089 | False | True | False | False | False |
138 | 0 | -1.232196 | -0.427204 | -0.741233 | 0.930284 | -0.896089 | False | True | False | False | False |
139 | 0 | 2.143771 | -0.427204 | -0.038166 | 0.930284 | -0.896089 | False | True | False | False | False |
140 | 0 | 0.267379 | -0.427204 | 0.884608 | 0.930284 | 1.114367 | False | True | False | False | False |
141 | 0 | 1.642374 | 2.980688 | -0.169991 | -1.073405 | 1.114367 | False | True | False | False | False |
142 | 1 | 0.142799 | 2.980688 | -0.243228 | 0.930284 | -0.896089 | True | False | False | False | False |
143 | 1 | 0.142799 | 2.980688 | 0.899256 | -1.073405 | 1.114367 | True | False | False | False | False |
144 | 0 | 1.017936 | -0.427204 | -0.389700 | -1.073405 | -0.896089 | False | True | False | False | False |
145 | 0 | 0.518077 | -0.427204 | -0.667997 | -1.073405 | -0.896089 | False | True | False | False | False |
146 | 0 | 0.767238 | -0.427204 | -1.253886 | 0.930284 | 1.114367 | False | False | False | True | False |
147 | 0 | 0.518077 | -0.427204 | -1.034178 | 0.930284 | 1.114367 | False | True | False | False | False |
148 | 0 | 1.517794 | -0.427204 | -0.682644 | 0.930284 | -0.896089 | False | True | False | False | False |
149 | 0 | -0.858456 | -0.427204 | -0.038166 | 0.930284 | -0.896089 | False | True | False | False | False |
150 | 0 | -0.732338 | -0.427204 | -0.067461 | -1.073405 | -0.896089 | False | True | False | False | False |
151 | 1 | -1.733593 | 2.980688 | 1.133611 | -1.073405 | 1.114367 | True | False | False | False | False |
152 | 0 | 0.142799 | -0.427204 | 0.884608 | 0.930284 | -0.896089 | False | True | False | False | False |
153 | 0 | -0.858456 | -0.427204 | -0.448289 | 0.930284 | -0.896089 | False | True | False | False | False |
154 | 0 | -0.983036 | -0.427204 | 0.430545 | -1.073405 | -0.896089 | True | False | False | False | False |
155 | 0 | 0.142799 | -0.427204 | 1.309378 | -1.073405 | -0.896089 | False | False | False | True | False |
156 | 0 | -0.232479 | -0.427204 | 0.152247 | -1.073405 | -0.896089 | False | True | False | False | False |
157 | 1 | 2.392931 | 2.980688 | 0.664900 | 0.930284 | -0.896089 | False | True | False | False | False |
158 | 1 | -0.232479 | -0.427204 | 0.518428 | -1.073405 | 1.114367 | False | True | False | False | False |
159 | 0 | -0.483177 | -0.427204 | -0.843764 | 0.930284 | 1.114367 | False | True | False | False | False |
160 | 0 | -1.733593 | -0.427204 | -0.199286 | 0.930284 | -0.896089 | False | True | False | False | False |
161 | 0 | -0.858456 | -0.427204 | -0.228580 | 0.930284 | -0.896089 | False | False | False | True | False |
162 | 1 | -0.483177 | -0.427204 | -0.506878 | 0.930284 | -0.896089 | True | False | False | False | False |
163 | 0 | -0.357059 | -0.427204 | -0.902353 | -1.073405 | -0.896089 | False | True | False | False | False |
164 | 1 | 0.018219 | 2.980688 | 0.328014 | -1.073405 | 1.114367 | True | False | False | False | False |
165 | 0 | -1.107616 | -0.427204 | -1.224591 | 0.930284 | -0.896089 | True | False | False | False | False |
166 | 0 | 0.642658 | -0.427204 | 0.269425 | 0.930284 | -0.896089 | False | False | False | True | False |
167 | 1 | 1.142516 | 2.128715 | -0.184639 | 0.930284 | 1.114367 | False | True | False | False | False |
168 | 0 | -0.732338 | -0.427204 | -0.843764 | -1.073405 | -0.896089 | False | False | False | True | False |
169 | 1 | 0.018219 | -0.427204 | -0.711939 | -1.073405 | 1.114367 | False | False | False | True | False |
170 | 0 | -0.107899 | -0.427204 | 0.020422 | -1.073405 | 1.114367 | False | True | False | False | False |
171 | 0 | -0.107899 | -0.427204 | -0.521525 | 0.930284 | 1.114367 | False | False | False | True | False |
172 | 0 | 1.393214 | -0.427204 | -0.008872 | -1.073405 | 1.114367 | False | True | False | False | False |
173 | 0 | 0.767238 | -0.427204 | 0.284072 | 0.930284 | -0.896089 | True | False | False | False | False |
174 | 1 | -0.983036 | -0.427204 | -0.917000 | -1.073405 | 1.114367 | True | False | False | False | False |
175 | 1 | -0.983036 | -0.427204 | -0.331111 | 0.930284 | 1.114367 | False | False | True | False | False |
176 | 0 | -0.858456 | -0.427204 | -1.151355 | -1.073405 | -0.896089 | False | True | False | False | False |
177 | 0 | 1.642374 | -0.427204 | 0.079011 | 0.930284 | -0.896089 | False | False | False | True | False |
178 | 0 | 1.642374 | -0.427204 | 0.254778 | -1.073405 | 1.114367 | False | False | False | True | False |
179 | 1 | -0.732338 | 2.128715 | 1.411908 | -1.073405 | -0.896089 | False | False | False | True | False |
180 | 1 | 1.017936 | 2.128715 | 1.485145 | -1.073405 | 1.114367 | True | False | False | False | False |
181 | 0 | -1.482894 | -0.427204 | -0.345758 | 0.930284 | -0.896089 | False | True | False | False | False |
182 | 0 | -0.732338 | -0.427204 | 1.148258 | -1.073405 | 1.114367 | True | False | False | False | False |
183 | 0 | 0.642658 | -0.427204 | -1.224591 | 0.930284 | -0.896089 | False | False | True | False | False |
184 | 0 | -1.607474 | -0.427204 | -0.682644 | 0.930284 | -0.896089 | True | False | False | False | False |
185 | 0 | -1.482894 | -0.427204 | 0.606311 | 0.930284 | 1.114367 | False | True | False | False | False |
186 | 0 | 1.393214 | -0.427204 | 0.738136 | 0.930284 | 1.114367 | False | False | False | True | False |
187 | 1 | 2.519049 | -0.427204 | -0.331111 | 0.930284 | -0.896089 | False | True | False | False | False |
188 | 0 | 0.391959 | -0.427204 | -1.415005 | 0.930284 | -0.896089 | True | False | False | False | False |
189 | 0 | 0.018219 | -0.427204 | -1.092766 | -1.073405 | -0.896089 | True | False | False | False | False |
190 | 0 | -0.607758 | -0.427204 | -1.371064 | 0.930284 | 1.114367 | False | True | False | False | False |
191 | 0 | -1.358314 | -0.427204 | -0.550819 | 0.930284 | 1.114367 | False | True | False | False | False |
192 | 0 | -1.107616 | -0.427204 | -0.111403 | -1.073405 | 1.114367 | True | False | False | False | False |
193 | 1 | -0.357059 | -0.427204 | -0.169991 | 0.930284 | -0.896089 | True | False | False | False | False |
194 | 0 | 0.267379 | -0.427204 | -0.990236 | -1.073405 | -0.896089 | True | False | False | False | False |
195 | 1 | 0.518077 | -0.427204 | 1.411908 | 0.930284 | -0.896089 | False | True | False | False | False |
196 | 0 | -0.607758 | -0.427204 | 1.177553 | 0.930284 | 1.114367 | True | False | False | False | False |
197 | 0 | -0.607758 | -0.427204 | -0.111403 | 0.930284 | 1.114367 | False | True | False | False | False |
198 | 0 | -0.357059 | -0.427204 | -0.873058 | 0.930284 | 1.114367 | True | False | False | False | False |
199 | 0 | 2.392931 | -0.427204 | 0.606311 | 0.930284 | -0.896089 | False | False | False | True | False |
200 | 0 | -0.983036 | -0.427204 | 0.445192 | -1.073405 | 1.114367 | False | False | False | True | False |
201 | 0 | -0.483177 | -0.427204 | 1.968503 | -1.073405 | -0.896089 | False | True | False | False | False |
202 | 0 | 0.518077 | -0.427204 | -1.239239 | -1.073405 | 1.114367 | False | True | False | False | False |
203 | 0 | -0.483177 | -0.427204 | 0.562370 | -1.073405 | 1.114367 | False | True | False | False | False |
204 | 0 | 0.018219 | -0.427204 | 1.206847 | -1.073405 | -0.896089 | False | True | False | False | False |
205 | 0 | 0.018219 | -0.427204 | 0.445192 | -1.073405 | 1.114367 | True | False | False | False | False |
206 | 0 | 1.393214 | -0.427204 | 0.122953 | 0.930284 | -0.896089 | True | False | False | False | False |
207 | 1 | -0.232479 | -0.427204 | 1.616970 | 0.930284 | 1.114367 | False | True | False | False | False |
208 | 0 | 0.018219 | -0.427204 | -1.224591 | -1.073405 | 1.114367 | True | False | False | False | False |
209 | 0 | 0.018219 | -0.427204 | -0.345758 | 0.930284 | -0.896089 | True | False | False | False | False |
210 | 0 | 0.391959 | -0.427204 | -0.184639 | 0.930284 | 1.114367 | False | True | False | False | False |
211 | 0 | 0.767238 | -0.427204 | -0.360405 | 0.930284 | -0.896089 | False | True | False | False | False |
212 | 0 | 0.391959 | -0.427204 | -0.843764 | 0.930284 | 1.114367 | False | True | False | False | False |
213 | 0 | -0.107899 | -0.427204 | 0.430545 | -1.073405 | -0.896089 | False | False | False | True | False |
214 | 0 | 2.017653 | -0.427204 | -0.858411 | -1.073405 | -0.896089 | False | False | False | True | False |
215 | 0 | -0.107899 | -0.427204 | -0.111403 | 0.930284 | 1.114367 | True | False | False | False | False |
216 | 0 | 1.517794 | -0.427204 | 2.085681 | 0.930284 | -0.896089 | False | True | False | False | False |
217 | 0 | -0.107899 | -0.427204 | -0.711939 | 0.930284 | -0.896089 | True | False | False | False | False |
218 | 0 | -0.983036 | -0.427204 | 0.240131 | -1.073405 | -0.896089 | True | False | False | False | False |
219 | 1 | 2.143771 | -0.427204 | 1.309378 | -1.073405 | -0.896089 | False | True | False | False | False |
220 | 0 | 0.518077 | -0.427204 | -0.770528 | 0.930284 | -0.896089 | False | True | False | False | False |
221 | 0 | -0.232479 | -0.427204 | -0.565466 | 0.930284 | 1.114367 | False | True | False | False | False |
222 | 0 | -0.107899 | -0.427204 | -0.448289 | 0.930284 | -0.896089 | False | True | False | False | False |
223 | 1 | -0.483177 | -0.427204 | 0.635606 | 0.930284 | -0.896089 | False | False | False | True | False |
224 | 0 | -0.858456 | -0.427204 | 0.723489 | -1.073405 | -0.896089 | False | True | False | False | False |
225 | 0 | 0.518077 | -0.427204 | -0.960941 | 0.930284 | 1.114367 | False | True | False | False | False |
226 | 0 | 2.017653 | -0.427204 | -0.389700 | -1.073405 | -0.896089 | True | False | False | False | False |
227 | 0 | -1.607474 | -0.427204 | -1.327122 | -1.073405 | -0.896089 | False | True | False | False | False |
228 | 0 | -0.983036 | -0.427204 | 0.020422 | 0.930284 | -0.896089 | False | False | False | True | False |
229 | 0 | -0.357059 | -0.427204 | 1.573028 | 0.930284 | -0.896089 | False | True | False | False | False |
230 | 0 | -0.858456 | -0.427204 | -0.448289 | 0.930284 | 1.114367 | True | False | False | False | False |
231 | 1 | -0.983036 | -0.427204 | 0.005775 | 0.930284 | 1.114367 | True | False | False | False | False |
232 | 1 | -1.107616 | -0.427204 | 0.489133 | 0.930284 | -0.896089 | True | False | False | False | False |
233 | 0 | -0.357059 | -0.427204 | -1.151355 | 0.930284 | 1.114367 | False | True | False | False | False |
234 | 1 | -0.607758 | -0.427204 | -0.960941 | -1.073405 | 1.114367 | False | True | False | False | False |
235 | 0 | 0.518077 | -0.427204 | -0.199286 | 0.930284 | 1.114367 | False | True | False | False | False |
236 | 1 | -0.483177 | -0.427204 | -0.799822 | 0.930284 | -0.896089 | False | True | False | False | False |
237 | 1 | -0.107899 | -0.427204 | 2.114975 | -1.073405 | 1.114367 | False | True | False | False | False |
238 | 0 | -0.483177 | -0.427204 | 0.342661 | -1.073405 | -0.896089 | False | True | False | False | False |
239 | 0 | -0.732338 | -0.427204 | 0.020422 | 0.930284 | 1.114367 | True | False | False | False | False |
240 | 0 | -0.732338 | 1.276742 | 0.533075 | 0.930284 | -0.896089 | False | True | False | False | False |
241 | 0 | 0.018219 | -0.427204 | -0.389700 | -1.073405 | -0.896089 | True | False | False | False | False |
242 | 0 | -0.732338 | 1.276742 | -0.624055 | -1.073405 | -0.896089 | False | True | False | False | False |
243 | 1 | 0.391959 | -0.427204 | 1.822031 | 0.930284 | 1.114367 | True | False | False | False | False |
244 | 0 | 0.018219 | 1.276742 | -1.004883 | 0.930284 | -0.896089 | False | True | False | False | False |
245 | 0 | -0.732338 | -0.427204 | -0.609408 | 0.930284 | 1.114367 | False | True | False | False | False |
246 | 0 | -1.482894 | -0.427204 | -0.858411 | -1.073405 | -0.896089 | True | False | False | False | False |
247 | 0 | -0.232479 | 0.424769 | -0.697291 | -1.073405 | 1.114367 | False | False | True | False | False |
248 | 0 | 2.017653 | 1.276742 | -1.092766 | -1.073405 | -0.896089 | True | False | False | False | False |
249 | 0 | -1.358314 | 0.424769 | -1.122061 | 0.930284 | -0.896089 | False | True | False | False | False |
250 | 1 | -0.483177 | 0.424769 | -0.067461 | 0.930284 | 1.114367 | False | True | False | False | False |
251 | 0 | 1.268634 | 0.424769 | -0.711939 | 0.930284 | 1.114367 | False | True | False | False | False |
252 | 0 | -0.732338 | 0.424769 | -0.184639 | 0.930284 | -0.896089 | False | True | False | False | False |
253 | 0 | -0.107899 | -0.427204 | 1.001786 | -1.073405 | -0.896089 | False | True | False | False | False |
254 | 1 | -1.232196 | -0.427204 | -0.770528 | -1.073405 | -0.896089 | True | False | False | False | False |
255 | 0 | 0.267379 | -0.427204 | -1.224591 | -1.073405 | -0.896089 | False | True | False | False | False |
256 | 1 | 1.517794 | -0.427204 | 2.202858 | -1.073405 | -0.896089 | False | True | False | False | False |
257 | 0 | 1.017936 | -0.427204 | -0.096755 | -1.073405 | -0.896089 | True | False | False | False | False |
258 | 0 | 1.517794 | -0.427204 | -0.697291 | -1.073405 | 1.114367 | False | True | False | False | False |
259 | 0 | -1.358314 | -0.427204 | -0.741233 | 0.930284 | -0.896089 | False | True | False | False | False |
260 | 0 | -0.983036 | -0.427204 | -0.580114 | -1.073405 | 1.114367 | False | False | False | True | False |
261 | 0 | -1.232196 | -0.427204 | -1.327122 | 0.930284 | -0.896089 | False | True | False | False | False |
262 | 0 | 0.142799 | -0.427204 | 0.650253 | 0.930284 | 1.114367 | False | False | False | True | False |
263 | 0 | 0.518077 | -0.427204 | 1.338672 | 0.930284 | -0.896089 | False | True | False | False | False |
264 | 0 | -1.107616 | -0.427204 | -0.462936 | 0.930284 | -0.896089 | False | True | False | False | False |
265 | 0 | 0.767238 | -0.427204 | -0.023519 | 0.930284 | 1.114367 | False | True | False | False | False |
266 | 1 | 0.518077 | -0.427204 | 2.466508 | 0.930284 | 1.114367 | False | True | False | False | False |
267 | 0 | 0.267379 | -0.427204 | 0.269425 | -1.073405 | 1.114367 | False | True | False | False | False |
268 | 1 | -0.732338 | 1.276742 | 0.606311 | -1.073405 | -0.896089 | False | True | False | False | False |
269 | 0 | 0.893356 | -0.427204 | 0.196189 | 0.930284 | 1.114367 | False | True | False | False | False |
270 | 0 | -0.483177 | -0.427204 | 0.122953 | -1.073405 | -0.896089 | False | False | True | False | False |
271 | 0 | 0.142799 | 1.276742 | 1.031081 | 0.930284 | -0.896089 | False | True | False | False | False |
272 | 0 | 0.518077 | -0.427204 | 1.426556 | -1.073405 | 1.114367 | False | True | False | False | False |
273 | 0 | -1.482894 | -0.427204 | -0.521525 | 0.930284 | 1.114367 | False | False | True | False | False |
274 | 0 | 0.518077 | -0.427204 | -0.477583 | 0.930284 | 1.114367 | False | True | False | False | False |
275 | 1 | -0.983036 | -0.427204 | -1.048825 | 0.930284 | -0.896089 | False | False | False | True | False |
276 | 0 | -1.358314 | -0.427204 | -0.770528 | -1.073405 | 1.114367 | False | True | False | False | False |
277 | 1 | -0.983036 | -0.427204 | 0.108306 | 0.930284 | -0.896089 | False | False | False | True | False |
278 | 0 | 0.767238 | 1.276742 | -1.268533 | 0.930284 | -0.896089 | False | True | False | False | False |
279 | 1 | 0.391959 | -0.427204 | -0.316464 | -1.073405 | 1.114367 | False | True | False | False | False |
280 | 1 | 0.642658 | -0.427204 | 0.899256 | 0.930284 | -0.896089 | True | False | False | False | False |
281 | 1 | 2.392931 | -0.427204 | 2.378625 | 0.930284 | 1.114367 | False | True | False | False | False |
282 | 0 | 0.642658 | 1.276742 | 1.045728 | 0.930284 | -0.896089 | False | True | False | False | False |
283 | 0 | 0.642658 | -0.427204 | -0.960941 | 0.930284 | -0.896089 | False | True | False | False | False |
284 | 0 | -0.732338 | -0.427204 | -0.331111 | -1.073405 | 1.114367 | False | True | False | False | False |
285 | 0 | -0.607758 | -0.427204 | 0.254778 | 0.930284 | -0.896089 | False | True | False | False | False |
286 | 0 | -0.732338 | -0.427204 | -1.341769 | -1.073405 | 1.114367 | False | True | False | False | False |
287 | 1 | -0.732338 | -0.427204 | -1.151355 | 0.930284 | 1.114367 | False | False | False | True | False |
288 | 1 | -0.858456 | -0.427204 | -1.136708 | -1.073405 | -0.896089 | False | False | True | False | False |
289 | 0 | -0.858456 | -0.427204 | 0.020422 | 0.930284 | -0.896089 | False | False | True | False | False |
290 | 0 | 0.518077 | -0.427204 | 0.591664 | 0.930284 | -0.896089 | True | False | False | False | False |
291 | 0 | -0.357059 | -0.427204 | -1.019530 | -1.073405 | 1.114367 | False | True | False | False | False |
292 | 0 | 0.142799 | -0.427204 | 0.752783 | -1.073405 | -0.896089 | True | False | False | False | False |
293 | 0 | 0.518077 | -0.427204 | -0.301816 | -1.073405 | 1.114367 | False | True | False | False | False |
294 | 1 | -0.858456 | -0.427204 | 1.397261 | 0.930284 | 1.114367 | False | False | False | True | False |
295 | 1 | -0.858456 | -0.427204 | 0.577017 | 0.930284 | 1.114367 | False | True | False | False | False |
296 | 0 | 1.393214 | -0.427204 | 0.284072 | 0.930284 | -0.896089 | False | True | False | False | False |
297 | 0 | -0.607758 | -0.427204 | -0.550819 | -1.073405 | -0.896089 | True | False | False | False | False |
298 | 0 | 0.518077 | -0.427204 | -0.785175 | -1.073405 | -0.896089 | True | False | False | False | False |
299 | 1 | 0.642658 | -0.427204 | 0.840667 | -1.073405 | 1.114367 | False | False | False | True | False |
300 | 0 | 1.142516 | -0.427204 | 0.459839 | 0.930284 | -0.896089 | True | False | False | False | False |
301 | 1 | -0.607758 | -0.427204 | 0.928550 | 0.930284 | -0.896089 | False | True | False | False | False |
302 | 0 | -1.358314 | -0.427204 | -0.873058 | 0.930284 | -0.896089 | True | False | False | False | False |
303 | 0 | -0.357059 | -0.427204 | 0.152247 | 0.930284 | -0.896089 | False | True | False | False | False |
304 | 0 | -0.732338 | -0.427204 | -1.122061 | -1.073405 | -0.896089 | True | False | False | False | False |
305 | 0 | 0.642658 | -0.427204 | -0.946294 | 0.930284 | 1.114367 | True | False | False | False | False |
306 | 0 | 0.767238 | -0.427204 | -1.400358 | -1.073405 | -0.896089 | True | False | False | False | False |
307 | 0 | -1.607474 | -0.427204 | 1.221495 | -1.073405 | 1.114367 | False | True | False | False | False |
308 | 0 | 0.391959 | -0.427204 | -1.327122 | 0.930284 | 1.114367 | False | True | False | False | False |
309 | 0 | 0.267379 | -0.427204 | -0.257875 | -1.073405 | -0.896089 | True | False | False | False | False |
310 | 1 | 0.767238 | -0.427204 | 0.796725 | -1.073405 | 1.114367 | False | False | False | True | False |
311 | 1 | 0.767238 | -0.427204 | 0.620958 | 0.930284 | 1.114367 | False | False | False | True | False |
312 | 1 | 0.518077 | -0.427204 | 1.880619 | 0.930284 | 1.114367 | False | True | False | False | False |
313 | 1 | -1.358314 | -0.427204 | 0.855314 | -1.073405 | 1.114367 | True | False | False | False | False |
314 | 0 | -0.357059 | 1.276742 | 1.865972 | 0.930284 | -0.896089 | False | False | False | True | False |
315 | 0 | -1.733593 | -0.427204 | -0.375053 | -1.073405 | -0.896089 | False | False | False | True | False |
316 | 0 | -0.732338 | -0.427204 | -1.166003 | -1.073405 | 1.114367 | False | True | False | False | False |
317 | 0 | 0.018219 | -0.427204 | -1.385711 | -1.073405 | -0.896089 | True | False | False | False | False |
318 | 0 | -0.732338 | 1.276742 | 1.148258 | 0.930284 | 1.114367 | False | True | False | False | False |
319 | 0 | 0.767238 | -0.427204 | -0.521525 | -1.073405 | -0.896089 | True | False | False | False | False |
320 | 1 | 0.267379 | -0.427204 | 0.386603 | -1.073405 | -0.896089 | False | True | False | False | False |
321 | 0 | -0.357059 | -0.427204 | -1.224591 | -1.073405 | 1.114367 | True | False | False | False | False |
322 | 0 | 0.142799 | -0.427204 | -0.316464 | -1.073405 | -0.896089 | False | False | False | False | True |
323 | 0 | 0.518077 | -0.427204 | -1.195297 | 0.930284 | -0.896089 | True | False | False | False | False |
324 | 0 | 0.142799 | -0.427204 | 0.137600 | 0.930284 | -0.896089 | False | True | False | False | False |
325 | 0 | 1.393214 | 1.276742 | -1.166003 | 0.930284 | 1.114367 | False | False | False | True | False |
326 | 0 | -0.107899 | -0.427204 | -0.096755 | -1.073405 | -0.896089 | False | True | False | False | False |
327 | 0 | -0.983036 | -0.427204 | -0.169991 | -1.073405 | -0.896089 | False | True | False | False | False |
328 | 0 | 1.017936 | -0.427204 | -1.019530 | -1.073405 | -0.896089 | False | True | False | False | False |
329 | 1 | -0.232479 | -0.427204 | 4.546414 | 0.930284 | -0.896089 | False | True | False | False | False |
330 | 0 | 0.518077 | 1.276742 | -1.297827 | 0.930284 | 1.114367 | True | False | False | False | False |
331 | 0 | -0.732338 | -0.427204 | -1.136708 | -1.073405 | -0.896089 | False | True | False | False | False |
332 | 0 | -0.107899 | -0.427204 | -0.565466 | -1.073405 | -0.896089 | False | False | True | False | False |
333 | 0 | -1.107616 | -0.427204 | -0.785175 | 0.930284 | 1.114367 | False | True | False | False | False |
334 | 0 | -0.483177 | -0.427204 | -0.799822 | 0.930284 | -0.896089 | False | True | False | False | False |
335 | 0 | -1.107616 | 1.276742 | -1.107414 | -1.073405 | -0.896089 | False | True | False | False | False |
336 | 0 | -0.858456 | -0.427204 | -0.375053 | 0.930284 | -0.896089 | False | True | False | False | False |
337 | 1 | 1.642374 | -0.427204 | 3.008456 | -1.073405 | -0.896089 | False | True | False | False | False |
338 | 1 | 0.518077 | -0.427204 | 0.840667 | -1.073405 | -0.896089 | True | False | False | False | False |
339 | 0 | 0.267379 | -0.427204 | -0.960941 | -1.073405 | -0.896089 | False | True | False | False | False |
340 | 1 | 2.143771 | -0.427204 | -0.126050 | -1.073405 | -0.896089 | False | False | False | False | True |
341 | 0 | 1.642374 | -0.427204 | 1.616970 | 0.930284 | -0.896089 | False | True | False | False | False |
342 | 0 | -1.107616 | -0.427204 | -0.755880 | -1.073405 | 1.114367 | False | True | False | False | False |
343 | 0 | 1.393214 | -0.427204 | -1.048825 | -1.073405 | -0.896089 | False | False | False | False | True |
344 | 0 | -0.483177 | -0.427204 | -0.785175 | 0.930284 | -0.896089 | False | True | False | False | False |
345 | 0 | -0.107899 | -0.427204 | -0.609408 | -1.073405 | -0.896089 | False | True | False | False | False |
346 | 0 | 0.642658 | -0.427204 | -0.975589 | -1.073405 | 1.114367 | False | True | False | False | False |
347 | 1 | -1.358314 | -0.427204 | -0.565466 | -1.073405 | -0.896089 | False | False | False | True | False |
348 | 0 | -0.232479 | -0.427204 | -1.048825 | -1.073405 | -0.896089 | False | True | False | False | False |
349 | 1 | 2.268351 | -0.427204 | 1.031081 | -1.073405 | 1.114367 | False | False | True | False | False |
350 | 1 | 1.517794 | -0.427204 | 1.441203 | 0.930284 | -0.896089 | False | False | False | True | False |
351 | 0 | 0.018219 | -0.427204 | 0.401250 | 0.930284 | 1.114367 | False | True | False | False | False |
352 | 0 | -0.107899 | -0.427204 | 0.987139 | 0.930284 | 1.114367 | False | True | False | False | False |
353 | 0 | 1.768493 | -0.427204 | -0.023519 | -1.073405 | -0.896089 | False | True | False | False | False |
354 | 0 | -1.107616 | 1.276742 | -0.140697 | 0.930284 | 1.114367 | True | False | False | False | False |
355 | 1 | -1.482894 | -0.427204 | -0.096755 | -1.073405 | 1.114367 | False | True | False | False | False |
356 | 0 | -1.482894 | 1.276742 | -0.228580 | 0.930284 | -0.896089 | True | False | False | False | False |
357 | 0 | 0.391959 | 1.276742 | -1.268533 | 0.930284 | 1.114367 | True | False | False | False | False |
358 | 0 | -0.858456 | 1.276742 | -0.287169 | 0.930284 | -0.896089 | True | False | False | False | False |
359 | 1 | -0.607758 | 1.276742 | 2.847336 | 0.930284 | -0.896089 | False | False | False | True | False |
360 | 0 | -0.107899 | 1.276742 | 0.752783 | -1.073405 | -0.896089 | False | True | False | False | False |
361 | 0 | 1.893073 | 1.276742 | 0.122953 | 0.930284 | -0.896089 | True | False | False | False | False |
362 | 0 | -0.732338 | 1.276742 | -0.521525 | -1.073405 | 1.114367 | False | True | False | False | False |
363 | 0 | 0.893356 | 1.276742 | -0.536172 | 0.930284 | -0.896089 | False | False | False | True | False |
364 | 0 | -0.483177 | 1.276742 | -0.770528 | 0.930284 | 1.114367 | False | True | False | False | False |
365 | 0 | 0.518077 | 1.276742 | -0.799822 | 0.930284 | -0.896089 | False | True | False | False | False |
366 | 0 | 1.268634 | 1.276742 | -1.063472 | 0.930284 | 1.114367 | True | False | False | False | False |
367 | 0 | 1.268634 | 1.276742 | 0.210836 | 0.930284 | 1.114367 | False | True | False | False | False |
368 | 0 | 0.142799 | 1.276742 | -0.667997 | 0.930284 | 1.114367 | False | True | False | False | False |
369 | 1 | -1.232196 | 1.276742 | 0.269425 | -1.073405 | 1.114367 | False | False | True | False | False |
370 | 1 | 0.642658 | 1.276742 | 1.265436 | 0.930284 | 1.114367 | True | False | False | False | False |
371 | 1 | -1.607474 | 1.276742 | 0.782078 | 0.930284 | 1.114367 | False | True | False | False | False |
372 | 0 | 0.518077 | -0.427204 | -0.550819 | 0.930284 | 1.114367 | False | True | False | False | False |
373 | 0 | 0.767238 | -0.427204 | -1.253886 | 0.930284 | -0.896089 | False | False | True | False | False |
374 | 0 | -0.107899 | -0.427204 | -0.917000 | 0.930284 | -0.896089 | False | True | False | False | False |
375 | 0 | -0.732338 | -0.427204 | -0.082108 | -1.073405 | 1.114367 | False | True | False | False | False |
376 | 0 | -0.483177 | -0.427204 | 0.152247 | 0.930284 | 1.114367 | False | True | False | False | False |
377 | 1 | -0.357059 | -0.427204 | -0.799822 | 0.930284 | -0.896089 | False | True | False | False | False |
378 | 0 | -0.357059 | -0.427204 | -0.213933 | 0.930284 | -0.896089 | False | True | False | False | False |
379 | 0 | -0.232479 | -0.427204 | -0.404347 | 0.930284 | -0.896089 | False | True | False | False | False |
380 | 0 | -1.107616 | -0.427204 | 0.005775 | -1.073405 | -0.896089 | False | True | False | False | False |
381 | 0 | -1.733593 | -0.427204 | 1.031081 | -1.073405 | -0.896089 | False | True | False | False | False |
382 | 0 | -0.858456 | -0.427204 | -0.477583 | -1.073405 | -0.896089 | True | False | False | False | False |
383 | 0 | 0.267379 | -0.427204 | -0.199286 | -1.073405 | 1.114367 | False | True | False | False | False |
384 | 1 | -0.232479 | -0.427204 | 1.851325 | -1.073405 | -0.896089 | True | False | False | False | False |
385 | 0 | 0.518077 | -0.427204 | -0.770528 | -1.073405 | -0.896089 | False | True | False | False | False |
386 | 0 | 0.642658 | -0.427204 | -0.682644 | -1.073405 | -0.896089 | True | False | False | False | False |
387 | 0 | 1.268634 | -0.427204 | -1.063472 | -1.073405 | 1.114367 | False | False | False | True | False |
388 | 0 | -0.983036 | -0.427204 | -0.550819 | 0.930284 | 1.114367 | False | True | False | False | False |
389 | 0 | -0.858456 | -0.427204 | 2.041739 | -1.073405 | 1.114367 | False | False | True | False | False |
390 | 0 | 0.518077 | -0.427204 | -0.331111 | -1.073405 | 1.114367 | False | True | False | False | False |
391 | 1 | 0.642658 | -0.427204 | 0.694195 | -1.073405 | -0.896089 | False | True | False | False | False |
392 | 0 | -0.983036 | -0.427204 | 0.972492 | 0.930284 | -0.896089 | False | True | False | False | False |
393 | 0 | 0.142799 | -0.427204 | -0.140697 | 0.930284 | -0.896089 | False | True | False | False | False |
394 | 0 | 2.519049 | -0.427204 | 0.782078 | -1.073405 | -0.896089 | False | True | False | False | False |
395 | 1 | -0.983036 | -0.427204 | 0.430545 | 0.930284 | -0.896089 | True | False | False | False | False |
396 | 0 | -0.607758 | -0.427204 | 0.108306 | 0.930284 | 1.114367 | False | True | False | False | False |
397 | 1 | 0.142799 | -0.427204 | 0.137600 | 0.930284 | 1.114367 | False | True | False | False | False |
398 | 1 | -0.483177 | -0.427204 | -1.136708 | 0.930284 | -0.896089 | False | True | False | False | False |
399 | 0 | -0.232479 | -0.427204 | -0.448289 | 0.930284 | -0.896089 | True | False | False | False | False |
400 | 0 | -0.607758 | -0.427204 | -0.887705 | -1.073405 | 1.114367 | False | True | False | False | False |
401 | 1 | -1.358314 | -0.427204 | -0.638703 | 0.930284 | -0.896089 | False | True | False | False | False |
402 | 0 | -0.232479 | -0.427204 | -0.873058 | 0.930284 | -0.896089 | False | False | True | False | False |
403 | 0 | 1.893073 | -0.427204 | -0.492230 | -1.073405 | 1.114367 | False | True | False | False | False |
404 | 1 | -0.483177 | -0.427204 | 1.880619 | -1.073405 | 1.114367 | True | False | False | False | False |
405 | 0 | -0.858456 | -0.427204 | -0.902353 | 0.930284 | -0.896089 | False | True | False | False | False |
406 | 1 | 1.142516 | -0.427204 | -0.609408 | 0.930284 | -0.896089 | False | False | False | True | False |
407 | 0 | 1.642374 | -0.427204 | -0.067461 | 0.930284 | 1.114367 | False | False | True | False | False |
408 | 0 | 0.142799 | -0.427204 | -0.082108 | 0.930284 | 1.114367 | True | False | False | False | False |
409 | 0 | -0.732338 | -0.427204 | -0.697291 | 0.930284 | -0.896089 | False | False | False | True | False |
410 | 0 | 0.642658 | -0.427204 | -0.624055 | 0.930284 | -0.896089 | False | False | False | True | False |
411 | 0 | -0.232479 | -0.427204 | -0.624055 | -1.073405 | -0.896089 | False | True | False | False | False |
412 | 0 | -1.107616 | -0.427204 | -1.356416 | 0.930284 | -0.896089 | True | False | False | False | False |
413 | 0 | 0.142799 | -0.427204 | -0.448289 | -1.073405 | -0.896089 | False | True | False | False | False |
414 | 1 | -0.732338 | -0.427204 | 1.602322 | 0.930284 | 1.114367 | True | False | False | False | False |
415 | 0 | -0.607758 | -0.427204 | -0.565466 | -1.073405 | -0.896089 | True | False | False | False | False |
416 | 0 | -0.483177 | 2.128715 | -0.843764 | -1.073405 | 1.114367 | False | True | False | False | False |
417 | 0 | 1.017936 | 2.128715 | -0.829116 | -1.073405 | 1.114367 | False | True | False | False | False |
418 | 1 | -0.357059 | 2.128715 | 1.983150 | -1.073405 | 1.114367 | True | False | False | False | False |
419 | 0 | 1.517794 | 2.128715 | 2.905925 | 0.930284 | 1.114367 | False | True | False | False | False |
420 | 1 | 1.393214 | 2.128715 | 0.664900 | -1.073405 | 1.114367 | False | True | False | False | False |
421 | 0 | 1.017936 | 2.128715 | -0.902353 | -1.073405 | 1.114367 | True | False | False | False | False |
422 | 0 | 1.642374 | 2.128715 | -0.477583 | -1.073405 | -0.896089 | False | True | False | False | False |
423 | 0 | -0.607758 | 2.128715 | -1.092766 | 0.930284 | -0.896089 | False | False | False | True | False |
424 | 1 | -1.482894 | 2.128715 | 1.192200 | 0.930284 | 1.114367 | False | False | True | False | False |
425 | 0 | 0.142799 | 2.128715 | -1.268533 | 0.930284 | -0.896089 | False | False | True | False | False |
426 | 0 | -1.858173 | 2.128715 | -1.166003 | 0.930284 | 1.114367 | False | False | False | True | False |
427 | 0 | 1.017936 | 2.128715 | -1.444300 | -1.073405 | -0.896089 | False | True | False | False | False |
428 | 1 | -1.482894 | 2.128715 | -0.843764 | -1.073405 | -0.896089 | False | True | False | False | False |
429 | 0 | 0.767238 | 2.128715 | 1.499792 | 0.930284 | -0.896089 | False | True | False | False | False |
430 | 1 | -0.107899 | 2.128715 | 2.173564 | 0.930284 | 1.114367 | False | True | False | False | False |
431 | 0 | 1.893073 | 2.128715 | -0.799822 | 0.930284 | -0.896089 | False | True | False | False | False |
432 | 0 | 0.642658 | 2.128715 | -0.536172 | 0.930284 | -0.896089 | False | True | False | False | False |
433 | 1 | -0.732338 | 2.128715 | 0.386603 | -1.073405 | 1.114367 | True | False | False | False | False |
434 | 0 | 1.642374 | 2.128715 | 1.763442 | -1.073405 | -0.896089 | False | True | False | False | False |
435 | 0 | -0.858456 | 2.128715 | 1.983150 | -1.073405 | -0.896089 | False | True | False | False | False |
436 | 1 | 1.517794 | 2.128715 | 1.075022 | -1.073405 | -0.896089 | False | False | False | True | False |
437 | 0 | -0.983036 | 2.128715 | -0.858411 | 0.930284 | -0.896089 | True | False | False | False | False |
438 | 0 | -0.732338 | 2.128715 | 1.192200 | 0.930284 | -0.896089 | True | False | False | False | False |
439 | 1 | -1.733593 | 2.128715 | -0.843764 | -1.073405 | 1.114367 | True | False | False | False | False |
440 | 1 | -0.732338 | 2.128715 | 1.397261 | -1.073405 | -0.896089 | False | True | False | False | False |
441 | 1 | -1.358314 | 2.128715 | -0.536172 | 0.930284 | -0.896089 | False | False | True | False | False |
442 | 0 | 1.142516 | -0.427204 | -0.082108 | -1.073405 | -0.896089 | False | True | False | False | False |
443 | 0 | -1.607474 | -0.427204 | -0.858411 | -1.073405 | -0.896089 | False | True | False | False | False |
444 | 0 | 0.391959 | -0.427204 | -1.151355 | 0.930284 | 1.114367 | True | False | False | False | False |
445 | 0 | 2.143771 | -0.427204 | -0.375053 | -1.073405 | 1.114367 | True | False | False | False | False |
446 | 1 | -1.232196 | -0.427204 | 0.884608 | 0.930284 | 1.114367 | False | True | False | False | False |
447 | 0 | -1.232196 | -0.427204 | 0.093659 | 0.930284 | -0.896089 | False | True | False | False | False |
448 | 0 | 2.017653 | -0.427204 | 0.181542 | 0.930284 | -0.896089 | True | False | False | False | False |
449 | 0 | 0.391959 | -0.427204 | 0.913903 | 0.930284 | 1.114367 | False | True | False | False | False |
450 | 0 | 1.142516 | -0.427204 | -0.741233 | -1.073405 | -0.896089 | False | True | False | False | False |
451 | 1 | -1.358314 | -0.427204 | -0.082108 | -1.073405 | -0.896089 | True | False | False | False | False |
452 | 0 | -0.107899 | -0.427204 | -0.433641 | -1.073405 | 1.114367 | False | True | False | False | False |
453 | 0 | -1.232196 | -0.427204 | -0.843764 | 0.930284 | -0.896089 | True | False | False | False | False |
454 | 1 | 1.268634 | -0.427204 | 0.035070 | -1.073405 | -0.896089 | False | False | False | True | False |
455 | 0 | -0.107899 | -0.427204 | -0.653350 | 0.930284 | 1.114367 | True | False | False | False | False |
456 | 1 | -0.983036 | -0.427204 | -0.667997 | 0.930284 | -0.896089 | False | False | True | False | False |
457 | 1 | -0.232479 | -0.427204 | 1.558381 | 0.930284 | -0.896089 | True | False | False | False | False |
458 | 1 | 0.018219 | -0.427204 | 0.694195 | 0.930284 | -0.896089 | True | False | False | False | False |
459 | 0 | 1.893073 | -0.427204 | -1.341769 | -1.073405 | 1.114367 | True | False | False | False | False |
460 | 0 | -0.232479 | -0.427204 | -0.975589 | 0.930284 | 1.114367 | False | True | False | False | False |
461 | 1 | 0.767238 | -0.427204 | 2.188211 | 0.930284 | 1.114367 | False | False | False | True | False |
462 | 1 | -0.858456 | -0.427204 | 3.374636 | 0.930284 | -0.896089 | False | True | False | False | False |
463 | 1 | 0.391959 | -0.427204 | 0.840667 | -1.073405 | 1.114367 | False | False | False | True | False |
464 | 1 | -1.232196 | -0.427204 | 1.104317 | -1.073405 | 1.114367 | False | True | False | False | False |
465 | 1 | 1.517794 | -0.427204 | -0.462936 | 0.930284 | 1.114367 | True | False | False | False | False |
466 | 0 | -0.607758 | -0.427204 | -0.448289 | 0.930284 | 1.114367 | True | False | False | False | False |
467 | 0 | 1.142516 | -0.427204 | 0.401250 | 0.930284 | -0.896089 | True | False | False | False | False |
468 | 1 | -1.232196 | -0.427204 | 1.265436 | 0.930284 | -0.896089 | False | True | False | False | False |
469 | 1 | 0.767238 | -0.427204 | 1.353320 | -1.073405 | 1.114367 | True | False | False | False | False |
470 | 0 | -1.607474 | -0.427204 | -0.375053 | 0.930284 | 1.114367 | False | False | False | True | False |
471 | 1 | 0.018219 | -0.427204 | 1.016433 | -1.073405 | -0.896089 | True | False | False | False | False |
472 | 0 | 0.893356 | -0.427204 | -0.360405 | -1.073405 | -0.896089 | False | False | False | False | True |
473 | 0 | 0.391959 | -0.427204 | 0.650253 | -1.073405 | 1.114367 | False | True | False | False | False |
474 | 1 | -1.482894 | -0.427204 | 1.236142 | 0.930284 | 1.114367 | True | False | False | False | False |
475 | 0 | -0.858456 | -0.427204 | 1.411908 | 0.930284 | 1.114367 | False | False | False | True | False |
476 | 0 | 2.143771 | -0.427204 | -0.814469 | -1.073405 | -0.896089 | False | True | False | False | False |
477 | 0 | -1.232196 | -0.427204 | -0.990236 | 0.930284 | 1.114367 | False | True | False | False | False |
478 | 0 | -0.858456 | -0.427204 | 0.650253 | -1.073405 | -0.896089 | True | False | False | False | False |
479 | 0 | 1.017936 | -0.427204 | -0.404347 | -1.073405 | 1.114367 | False | True | False | False | False |
480 | 0 | -1.358314 | -0.427204 | 1.294731 | -1.073405 | 1.114367 | True | False | False | False | False |
481 | 0 | -0.107899 | -0.427204 | -0.155344 | 0.930284 | 1.114367 | False | False | False | True | False |
482 | 0 | -0.732338 | -0.427204 | -0.887705 | -1.073405 | -0.896089 | True | False | False | False | False |
483 | 0 | -0.483177 | 2.980688 | -0.287169 | -1.073405 | -0.896089 | False | True | False | False | False |
484 | 1 | 0.893356 | 2.980688 | -0.243228 | 0.930284 | -0.896089 | True | False | False | False | False |
485 | 0 | 1.768493 | 2.980688 | 0.694195 | -1.073405 | 1.114367 | True | False | False | False | False |
486 | 0 | 0.518077 | 2.980688 | 0.591664 | 0.930284 | 1.114367 | False | True | False | False | False |
487 | 0 | 1.268634 | 2.980688 | -0.887705 | 0.930284 | 1.114367 | False | False | False | True | False |
488 | 0 | 0.767238 | 2.980688 | -1.078119 | 0.930284 | -0.896089 | False | True | False | False | False |
489 | 0 | -0.732338 | 2.980688 | -1.268533 | -1.073405 | -0.896089 | True | False | False | False | False |
490 | 0 | 0.018219 | 2.980688 | 0.708842 | 0.930284 | 1.114367 | False | False | False | True | False |
491 | 0 | -0.983036 | 2.980688 | -0.506878 | 0.930284 | 1.114367 | True | False | False | False | False |
492 | 0 | -0.858456 | 2.980688 | -0.902353 | 0.930284 | 1.114367 | False | True | False | False | False |
493 | 0 | 1.642374 | 2.980688 | -1.034178 | 0.930284 | 1.114367 | False | True | False | False | False |
494 | 0 | -1.358314 | 2.980688 | -0.624055 | -1.073405 | 1.114367 | False | True | False | False | False |
495 | 0 | -0.483177 | 2.980688 | -0.887705 | -1.073405 | 1.114367 | False | True | False | False | False |
496 | 0 | 1.017936 | 2.980688 | -0.565466 | -1.073405 | 1.114367 | False | True | False | False | False |
497 | 0 | 0.893356 | 2.980688 | 0.049717 | 0.930284 | 1.114367 | False | True | False | False | False |
498 | 0 | 2.017653 | 2.980688 | -0.360405 | 0.930284 | 1.114367 | True | False | False | False | False |
499 | 1 | -1.607474 | 2.980688 | 1.880619 | 0.930284 | 1.114367 | False | True | False | False | False |
500 | 1 | 0.267379 | 2.980688 | 0.210836 | -1.073405 | 1.114367 | False | True | False | False | False |
501 | 1 | -1.607474 | 2.980688 | 0.518428 | -1.073405 | -0.896089 | False | False | False | True | False |
502 | 1 | 1.768493 | 2.980688 | 0.972492 | -1.073405 | -0.896089 | True | False | False | False | False |
503 | 0 | -0.732338 | 2.980688 | -0.301816 | -1.073405 | -0.896089 | False | True | False | False | False |
504 | 0 | 0.893356 | 2.980688 | -0.082108 | 0.930284 | -0.896089 | False | True | False | False | False |
505 | 0 | -0.107899 | 2.980688 | 0.430545 | 0.930284 | -0.896089 | False | True | False | False | False |
506 | 0 | -0.107899 | 2.980688 | -1.253886 | 0.930284 | -0.896089 | True | False | False | False | False |
507 | 1 | -0.357059 | 2.980688 | 0.694195 | 0.930284 | 1.114367 | True | False | False | False | False |
508 | 0 | 0.893356 | 2.980688 | -0.096755 | -1.073405 | -0.896089 | True | False | False | False | False |
509 | 1 | -1.358314 | 2.980688 | 0.855314 | 0.930284 | 1.114367 | False | True | False | False | False |
510 | 0 | -0.107899 | 2.980688 | -0.389700 | 0.930284 | 1.114367 | False | True | False | False | False |
511 | 0 | -1.107616 | 2.980688 | -0.814469 | 0.930284 | 1.114367 | False | True | False | False | False |
512 | 0 | -0.607758 | 2.980688 | 1.441203 | 0.930284 | -0.896089 | True | False | False | False | False |
513 | 1 | -0.357059 | 2.980688 | 2.671569 | 0.930284 | -0.896089 | False | True | False | False | False |
514 | 0 | 0.391959 | 2.980688 | -0.667997 | -1.073405 | -0.896089 | False | False | False | True | False |
515 | 0 | 1.017936 | 2.980688 | -0.257875 | -1.073405 | -0.896089 | True | False | False | False | False |
516 | 0 | -0.483177 | 2.980688 | 0.474486 | -1.073405 | 1.114367 | True | False | False | False | False |
517 | 0 | 0.267379 | 2.980688 | 1.031081 | -1.073405 | 1.114367 | False | False | True | False | False |
518 | 1 | 0.267379 | 2.980688 | 1.675558 | 0.930284 | 1.114367 | True | False | False | False | False |
519 | 1 | 0.767238 | 2.980688 | 2.378625 | 0.930284 | -0.896089 | False | False | False | True | False |
520 | 1 | -0.357059 | -0.427204 | -1.063472 | 0.930284 | -0.896089 | False | True | False | False | False |
521 | 1 | -1.607474 | -0.427204 | -0.184639 | -1.073405 | -0.896089 | True | False | False | False | False |
522 | 0 | -0.357059 | -0.427204 | 1.162906 | 0.930284 | 1.114367 | True | False | False | False | False |
523 | 0 | 1.517794 | -0.427204 | -0.111403 | -1.073405 | 1.114367 | True | False | False | False | False |
524 | 0 | 0.642658 | -0.427204 | -0.594761 | -1.073405 | -0.896089 | False | True | False | False | False |
525 | 0 | -0.483177 | -0.427204 | -0.521525 | 0.930284 | -0.896089 | False | True | False | False | False |
526 | 0 | -0.107899 | -0.427204 | -1.180650 | 0.930284 | 1.114367 | False | False | False | True | False |
527 | 0 | 2.143771 | -0.427204 | -0.375053 | -1.073405 | 1.114367 | False | False | True | False | False |
528 | 1 | -0.858456 | -0.427204 | -1.136708 | -1.073405 | -0.896089 | False | True | False | False | False |
529 | 0 | 0.391959 | -0.427204 | 0.459839 | -1.073405 | 1.114367 | False | False | False | True | False |
530 | 0 | -0.232479 | -0.427204 | -1.048825 | -1.073405 | -0.896089 | True | False | False | False | False |
531 | 0 | 0.518077 | -0.427204 | -0.536172 | -1.073405 | 1.114367 | True | False | False | False | False |
532 | 0 | 1.517794 | -0.427204 | -0.917000 | 0.930284 | -0.896089 | False | False | False | True | False |
533 | 0 | 0.142799 | -0.427204 | -1.312475 | -1.073405 | -0.896089 | True | False | False | False | False |
534 | 1 | -0.732338 | -0.427204 | 0.489133 | 0.930284 | -0.896089 | False | False | False | True | False |
535 | 1 | 1.642374 | -0.427204 | 0.913903 | -1.073405 | -0.896089 | False | False | True | False | False |
536 | 0 | 0.391959 | -0.427204 | -0.653350 | 0.930284 | 1.114367 | False | False | False | True | False |
537 | 0 | 1.393214 | -0.427204 | -0.873058 | 0.930284 | 1.114367 | True | False | False | False | False |
538 | 1 | -0.983036 | -0.427204 | 1.411908 | 0.930284 | -0.896089 | False | False | False | True | False |
539 | 0 | 2.392931 | -0.427204 | -0.257875 | -1.073405 | -0.896089 | False | True | False | False | False |
540 | 1 | -0.983036 | -0.427204 | 0.357308 | 0.930284 | -0.896089 | False | False | True | False | False |
541 | 0 | -1.482894 | -0.427204 | -1.268533 | 0.930284 | -0.896089 | False | True | False | False | False |
542 | 0 | 0.767238 | -0.427204 | 0.503781 | 0.930284 | -0.896089 | False | True | False | False | False |
543 | 1 | -1.358314 | -0.427204 | 0.152247 | 0.930284 | 1.114367 | False | True | False | False | False |
544 | 1 | -0.858456 | -0.427204 | 2.554392 | 0.930284 | -0.896089 | False | True | False | False | False |
545 | 0 | -1.107616 | -0.427204 | 0.035070 | 0.930284 | 1.114367 | False | True | False | False | False |
546 | 1 | -1.358314 | -0.427204 | -0.682644 | -1.073405 | -0.896089 | False | True | False | False | False |
547 | 0 | 1.768493 | -0.427204 | -0.433641 | -1.073405 | 1.114367 | True | False | False | False | False |
548 | 0 | -0.858456 | -0.427204 | -0.243228 | 0.930284 | 1.114367 | True | False | False | False | False |
549 | 0 | 0.391959 | -0.427204 | 0.401250 | 0.930284 | 1.114367 | False | True | False | False | False |
550 | 0 | -0.232479 | -0.427204 | -0.843764 | 0.930284 | -0.896089 | True | False | False | False | False |
551 | 0 | -1.107616 | -0.427204 | -0.814469 | 0.930284 | 1.114367 | False | True | False | False | False |
552 | 0 | 0.142799 | -0.427204 | -0.067461 | -1.073405 | 1.114367 | False | True | False | False | False |
553 | 1 | 0.267379 | -0.427204 | 3.857994 | 0.930284 | 1.114367 | False | False | False | True | False |
554 | 1 | -1.232196 | -0.427204 | 3.389283 | 0.930284 | 1.114367 | False | False | True | False | False |
555 | 0 | -0.732338 | -0.427204 | -0.799822 | 0.930284 | -0.896089 | False | True | False | False | False |
556 | 0 | -0.983036 | -0.427204 | -0.492230 | -1.073405 | -0.896089 | True | False | False | False | False |
557 | 0 | 1.268634 | -0.427204 | 0.694195 | -1.073405 | 1.114367 | False | True | False | False | False |
558 | 0 | 0.267379 | -0.427204 | -0.697291 | -1.073405 | 1.114367 | False | True | False | False | False |
559 | 1 | -0.732338 | -0.427204 | -0.609408 | 0.930284 | -0.896089 | True | False | False | False | False |
560 | 1 | 2.017653 | -0.427204 | 0.430545 | 0.930284 | 1.114367 | False | True | False | False | False |
561 | 1 | -1.607474 | -0.427204 | -0.272522 | -1.073405 | -0.896089 | False | False | False | True | False |
562 | 0 | -0.607758 | -0.427204 | 0.796725 | 0.930284 | -0.896089 | False | False | True | False | False |
563 | 0 | -0.483177 | -0.427204 | 0.298720 | -1.073405 | -0.896089 | False | True | False | False | False |
564 | 1 | -0.858456 | -0.427204 | 0.664900 | -1.073405 | 1.114367 | False | True | False | False | False |
565 | 0 | 0.018219 | -0.427204 | -0.667997 | -1.073405 | 1.114367 | False | True | False | False | False |
566 | 1 | -1.232196 | -0.427204 | -0.257875 | 0.930284 | -0.896089 | False | False | True | False | False |
567 | 1 | -0.357059 | -0.427204 | 0.664900 | -1.073405 | -0.896089 | True | False | False | False | False |
568 | 0 | -0.232479 | -0.427204 | -0.096755 | 0.930284 | 1.114367 | False | True | False | False | False |
569 | 1 | -0.858456 | -0.427204 | 2.173564 | 0.930284 | 1.114367 | True | False | False | False | False |
570 | 0 | 1.393214 | -0.427204 | -0.711939 | -1.073405 | -0.896089 | False | False | False | True | False |
571 | 0 | 0.767238 | -0.427204 | 0.547722 | -1.073405 | -0.896089 | False | True | False | False | False |
572 | 0 | 0.893356 | -0.427204 | -0.506878 | -1.073405 | -0.896089 | True | False | False | False | False |
573 | 0 | 0.767238 | -0.427204 | -0.770528 | -1.073405 | -0.896089 | False | False | True | False | False |
574 | 1 | -1.107616 | -0.427204 | 2.261447 | -1.073405 | -0.896089 | False | True | False | False | False |
575 | 0 | 1.517794 | -0.427204 | -0.155344 | -1.073405 | 1.114367 | False | True | False | False | False |
576 | 1 | -0.732338 | -0.427204 | 2.246800 | -1.073405 | -0.896089 | False | True | False | False | False |
577 | 0 | -0.107899 | -0.427204 | -0.814469 | 0.930284 | 1.114367 | False | True | False | False | False |
578 | 0 | 0.142799 | -0.427204 | -0.594761 | -1.073405 | 1.114367 | False | True | False | False | False |
579 | 0 | 0.391959 | -0.427204 | -1.063472 | 0.930284 | 1.114367 | True | False | False | False | False |
580 | 1 | 0.767238 | -0.427204 | 1.309378 | -1.073405 | -0.896089 | True | False | False | False | False |
581 | 0 | 1.393214 | -0.427204 | 0.518428 | 0.930284 | 1.114367 | False | True | False | False | False |
582 | 1 | 0.642658 | -0.427204 | 0.913903 | 0.930284 | 1.114367 | False | False | False | True | False |
583 | 0 | 1.142516 | -0.427204 | -1.136708 | -1.073405 | 1.114367 | True | False | False | False | False |
584 | 0 | 0.018219 | -0.427204 | 0.020422 | 0.930284 | -0.896089 | False | False | False | True | False |
585 | 0 | 0.142799 | -0.427204 | -0.711939 | 0.930284 | -0.896089 | False | True | False | False | False |
586 | 1 | -0.858456 | -0.427204 | -0.799822 | 0.930284 | 1.114367 | True | False | False | False | False |
587 | 1 | -0.732338 | -0.427204 | -0.755880 | 0.930284 | -0.896089 | True | False | False | False | False |
588 | 1 | -1.482894 | -0.427204 | 0.166895 | -1.073405 | 1.114367 | True | False | False | False | False |
589 | 0 | 0.767238 | -0.427204 | 0.752783 | 0.930284 | -0.896089 | True | False | False | False | False |
590 | 0 | -1.232196 | -0.427204 | -0.492230 | 0.930284 | -0.896089 | False | True | False | False | False |
591 | 0 | 1.268634 | -0.427204 | -0.711939 | -1.073405 | 1.114367 | True | False | False | False | False |
592 | 0 | 1.642374 | -0.427204 | -0.448289 | -1.073405 | 1.114367 | True | False | False | False | False |
593 | 0 | 0.391959 | -0.427204 | -0.477583 | 0.930284 | -0.896089 | False | True | False | False | False |
594 | 0 | -0.732338 | -0.427204 | -0.711939 | 0.930284 | -0.896089 | False | True | False | False | False |
595 | 0 | 0.893356 | -0.427204 | -0.975589 | -1.073405 | -0.896089 | False | False | True | False | False |
596 | 0 | -0.483177 | -0.427204 | 0.093659 | 0.930284 | 1.114367 | False | True | False | False | False |
597 | 0 | 0.642658 | -0.427204 | -0.492230 | 0.930284 | 1.114367 | False | True | False | False | False |
598 | 0 | -1.107616 | -0.427204 | 1.397261 | -1.073405 | 1.114367 | False | True | False | False | False |
599 | 0 | -1.232196 | -0.427204 | 1.455850 | 0.930284 | -0.896089 | False | True | False | False | False |
600 | 0 | 2.268351 | -0.427204 | -0.345758 | 0.930284 | 1.114367 | False | False | True | False | False |
601 | 0 | 1.893073 | -0.427204 | 0.562370 | -1.073405 | -0.896089 | False | False | False | True | False |
602 | 1 | 1.517794 | -0.427204 | 1.880619 | -1.073405 | 1.114367 | False | True | False | False | False |
603 | 1 | -1.482894 | -0.427204 | -0.272522 | -1.073405 | 1.114367 | False | True | False | False | False |
604 | 0 | 0.267379 | -0.427204 | -0.902353 | -1.073405 | -0.896089 | False | False | False | True | False |
605 | 0 | 0.767238 | -0.427204 | 0.181542 | -1.073405 | -0.896089 | False | True | False | False | False |
606 | 1 | -0.858456 | -0.427204 | 0.445192 | -1.073405 | -0.896089 | True | False | False | False | False |
607 | 1 | -0.483177 | -0.427204 | 2.993808 | -1.073405 | 1.114367 | False | True | False | False | False |
608 | 0 | 0.767238 | -0.427204 | -0.580114 | 0.930284 | 1.114367 | True | False | False | False | False |
609 | 0 | 0.142799 | -0.427204 | -0.052814 | 0.930284 | -0.896089 | False | True | False | False | False |
610 | 0 | 0.767238 | -0.427204 | -0.858411 | -1.073405 | 1.114367 | False | True | False | False | False |
611 | 0 | 2.268351 | -0.427204 | -0.682644 | 0.930284 | -0.896089 | True | False | False | False | False |
612 | 0 | -0.483177 | -0.427204 | 0.181542 | -1.073405 | 1.114367 | True | False | False | False | False |
613 | 0 | -0.858456 | -0.427204 | -1.078119 | -1.073405 | -0.896089 | True | False | False | False | False |
614 | 0 | 1.642374 | -0.427204 | 0.254778 | 0.930284 | 1.114367 | False | True | False | False | False |
615 | 1 | -1.482894 | -0.427204 | -0.931647 | 0.930284 | -0.896089 | True | False | False | False | False |
616 | 0 | -0.483177 | -0.427204 | -0.506878 | -1.073405 | -0.896089 | False | True | False | False | False |
617 | 0 | -0.983036 | -0.427204 | -0.785175 | 0.930284 | 1.114367 | False | True | False | False | False |
618 | 0 | 1.017936 | -0.427204 | -1.312475 | 0.930284 | 1.114367 | False | True | False | False | False |
619 | 0 | -0.732338 | -0.427204 | 1.236142 | -1.073405 | 1.114367 | True | False | False | False | False |
620 | 1 | 2.268351 | -0.427204 | -0.565466 | 0.930284 | 1.114367 | False | True | False | False | False |
621 | 0 | 0.391959 | -0.427204 | 0.489133 | -1.073405 | -0.896089 | False | True | False | False | False |
622 | 0 | -0.607758 | -0.427204 | -0.257875 | 0.930284 | 1.114367 | False | True | False | False | False |
623 | 1 | -0.858456 | -0.427204 | -0.126050 | -1.073405 | 1.114367 | False | False | False | True | False |
624 | 0 | 0.142799 | -0.427204 | 3.257458 | -1.073405 | -0.896089 | False | True | False | False | False |
625 | 0 | 1.642374 | -0.427204 | -1.195297 | -1.073405 | 1.114367 | False | True | False | False | False |
626 | 0 | -0.483177 | -0.427204 | -0.536172 | 0.930284 | -0.896089 | False | True | False | False | False |
627 | 0 | 0.018219 | -0.427204 | 0.035070 | -1.073405 | 1.114367 | False | True | False | False | False |
628 | 0 | 1.893073 | -0.427204 | 0.328014 | 0.930284 | 1.114367 | False | True | False | False | False |
629 | 0 | 0.893356 | -0.427204 | 0.694195 | 0.930284 | -0.896089 | True | False | False | False | False |
630 | 0 | 0.642658 | -0.427204 | -0.462936 | 0.930284 | -0.896089 | False | True | False | False | False |
631 | 1 | 0.267379 | -0.427204 | -1.371064 | 0.930284 | 1.114367 | True | False | False | False | False |
632 | 0 | -0.483177 | -0.427204 | -1.092766 | -1.073405 | 1.114367 | False | False | False | True | False |
633 | 0 | 0.391959 | -0.427204 | -0.331111 | 0.930284 | -0.896089 | False | True | False | False | False |
634 | 0 | 0.018219 | -0.427204 | 0.049717 | 0.930284 | -0.896089 | False | True | False | False | False |
635 | 0 | 1.142516 | -0.427204 | -0.682644 | 0.930284 | 1.114367 | False | True | False | False | False |
636 | 0 | 1.142516 | -0.427204 | 0.430545 | 0.930284 | 1.114367 | True | False | False | False | False |
637 | 0 | -0.232479 | -0.427204 | -1.371064 | -1.073405 | -0.896089 | False | True | False | False | False |
638 | 0 | 0.018219 | -0.427204 | -0.785175 | -1.073405 | -0.896089 | False | True | False | False | False |
639 | 0 | 0.142799 | -0.427204 | 0.401250 | -1.073405 | -0.896089 | False | False | False | True | False |
640 | 0 | -1.482894 | -0.427204 | -0.580114 | -1.073405 | 1.114367 | True | False | False | False | False |
641 | 0 | -0.983036 | -0.427204 | 0.371956 | -1.073405 | -0.896089 | False | True | False | False | False |
642 | 0 | -0.107899 | -0.427204 | -1.327122 | -1.073405 | -0.896089 | False | True | False | False | False |
643 | 1 | 0.018219 | -0.427204 | 0.122953 | -1.073405 | 1.114367 | False | True | False | False | False |
644 | 0 | -1.358314 | -0.427204 | -0.960941 | 0.930284 | -0.896089 | True | False | False | False | False |
645 | 0 | 1.642374 | -0.427204 | -0.565466 | -1.073405 | 1.114367 | False | True | False | False | False |
646 | 0 | -1.107616 | -0.427204 | 0.225484 | 0.930284 | 1.114367 | True | False | False | False | False |
647 | 0 | 0.518077 | -0.427204 | 1.236142 | -1.073405 | 1.114367 | True | False | False | False | False |
648 | 0 | -1.358314 | -0.427204 | -0.667997 | 0.930284 | 1.114367 | True | False | False | False | False |
649 | 0 | -0.983036 | -0.427204 | -1.341769 | -1.073405 | -0.896089 | False | True | False | False | False |
650 | 0 | 0.642658 | -0.427204 | -0.536172 | 0.930284 | 1.114367 | False | False | False | True | False |
651 | 0 | -0.357059 | -0.427204 | -0.960941 | 0.930284 | 1.114367 | True | False | False | False | False |
652 | 0 | 0.518077 | -0.427204 | -0.960941 | 0.930284 | 1.114367 | True | False | False | False | False |
653 | 0 | 0.642658 | -0.427204 | 0.635606 | -1.073405 | 1.114367 | False | True | False | False | False |
654 | 0 | -0.357059 | -0.427204 | -0.169991 | -1.073405 | 1.114367 | False | True | False | False | False |
655 | 0 | 0.518077 | -0.427204 | 1.265436 | -1.073405 | -0.896089 | False | True | False | False | False |
656 | 1 | -1.358314 | -0.427204 | 2.730158 | 0.930284 | -0.896089 | False | True | False | False | False |
657 | 1 | 1.017936 | -0.427204 | -0.550819 | -1.073405 | -0.896089 | False | False | True | False | False |
658 | 0 | 2.643629 | -0.427204 | 0.694195 | 0.930284 | 1.114367 | False | True | False | False | False |
659 | 0 | -0.357059 | -0.427204 | -0.843764 | 0.930284 | -0.896089 | False | False | False | True | False |
660 | 0 | 0.893356 | -0.427204 | -0.008872 | -1.073405 | 1.114367 | False | True | False | False | False |
661 | 1 | 1.393214 | -0.427204 | 0.430545 | -1.073405 | 1.114367 | False | False | False | True | False |
662 | 1 | -0.483177 | -0.427204 | 0.899256 | -1.073405 | -0.896089 | False | True | False | False | False |
663 | 0 | 1.017936 | -0.427204 | -1.122061 | -1.073405 | 1.114367 | False | True | False | False | False |
664 | 0 | -0.858456 | -0.427204 | 0.181542 | 0.930284 | 1.114367 | True | False | False | False | False |
665 | 0 | 0.518077 | -0.427204 | 0.386603 | 0.930284 | -0.896089 | False | False | False | True | False |
666 | 0 | 0.518077 | -0.427204 | -0.345758 | 0.930284 | -0.896089 | False | True | False | False | False |
667 | 1 | 0.267379 | -0.427204 | 0.855314 | -1.073405 | -0.896089 | False | False | True | False | False |
668 | 0 | -0.607758 | -0.427204 | 0.254778 | -1.073405 | -0.896089 | False | True | False | False | False |
669 | 0 | 0.267379 | -0.427204 | -0.638703 | 0.930284 | -0.896089 | False | False | False | False | True |
670 | 0 | -1.607474 | -0.427204 | 1.060375 | 0.930284 | 1.114367 | False | True | False | False | False |
671 | 0 | 1.893073 | -0.427204 | 0.591664 | -1.073405 | 1.114367 | False | True | False | False | False |
672 | 0 | -0.607758 | -0.427204 | -0.858411 | 0.930284 | -0.896089 | False | True | False | False | False |
673 | 0 | 0.518077 | -0.427204 | -0.917000 | 0.930284 | 1.114367 | False | True | False | False | False |
674 | 1 | -1.733593 | -0.427204 | 0.328014 | 0.930284 | 1.114367 | True | False | False | False | False |
675 | 0 | -0.483177 | -0.427204 | -1.122061 | 0.930284 | -0.896089 | False | False | False | True | False |
676 | 0 | -0.483177 | -0.427204 | -0.653350 | -1.073405 | 1.114367 | True | False | False | False | False |
677 | 1 | 0.642658 | -0.427204 | -1.195297 | -1.073405 | 1.114367 | False | True | False | False | False |
678 | 0 | -0.107899 | -0.427204 | -0.140697 | -1.073405 | -0.896089 | False | True | False | False | False |
679 | 0 | 0.018219 | -0.427204 | -1.063472 | -1.073405 | -0.896089 | False | True | False | False | False |
680 | 1 | -0.607758 | -0.427204 | 2.217506 | 0.930284 | 1.114367 | False | True | False | False | False |
681 | 1 | -1.858173 | -0.427204 | -0.082108 | -1.073405 | -0.896089 | False | True | False | False | False |
682 | 0 | 0.142799 | -0.427204 | 0.181542 | 0.930284 | 1.114367 | False | False | True | False | False |
683 | 0 | -1.733593 | -0.427204 | -0.580114 | 0.930284 | 1.114367 | False | True | False | False | False |
684 | 0 | -0.107899 | -0.427204 | 0.035070 | 0.930284 | 1.114367 | False | True | False | False | False |
685 | 1 | 0.018219 | -0.427204 | 0.855314 | -1.073405 | -0.896089 | False | True | False | False | False |
686 | 0 | 0.018219 | -0.427204 | -0.345758 | -1.073405 | 1.114367 | False | False | False | True | False |
687 | 1 | -0.107899 | -0.427204 | 0.005775 | -1.073405 | -0.896089 | False | True | False | False | False |
688 | 0 | -0.232479 | -0.427204 | 0.079011 | -1.073405 | -0.896089 | False | True | False | False | False |
689 | 0 | -0.607758 | -0.427204 | 0.064364 | 0.930284 | -0.896089 | False | True | False | False | False |
690 | 0 | -1.358314 | -0.427204 | -0.433641 | 0.930284 | -0.896089 | True | False | False | False | False |
691 | 0 | 1.517794 | -0.427204 | -0.448289 | 0.930284 | 1.114367 | False | True | False | False | False |
692 | 1 | 2.268351 | -0.427204 | 2.730158 | 0.930284 | -0.896089 | False | True | False | False | False |
693 | 0 | -1.607474 | -0.427204 | -0.814469 | 0.930284 | -0.896089 | False | False | False | True | False |
694 | 0 | 1.642374 | -0.427204 | 0.269425 | -1.073405 | -0.896089 | True | False | False | False | False |
695 | 1 | 0.142799 | -0.427204 | -0.829116 | 0.930284 | -0.896089 | True | False | False | False | False |
696 | 0 | -0.732338 | -0.427204 | 0.181542 | 0.930284 | -0.896089 | True | False | False | False | False |
697 | 0 | -0.232479 | -0.427204 | -0.389700 | 0.930284 | -0.896089 | False | True | False | False | False |
698 | 0 | 1.268634 | -0.427204 | -0.272522 | 0.930284 | 1.114367 | False | True | False | False | False |
699 | 0 | 0.267379 | -0.427204 | 0.650253 | -1.073405 | -0.896089 | False | True | False | False | False |
将样本示例全集分割为训练样本和测试样本,测试样本占比为30%,设定随机数种子为123,以保证随机抽样的结果可重复。
# 设置特征变量,即除V1之外的全部变量
X = data.drop(['V1', 'V3_5'], axis=1)
X['intercept'] = [1]*X.shape[0]
y = data['V1']
print(data["V1"].value_counts())
V1
0 517
1 183
Name: count, dtype: int64
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=123)
X_train.head()
V2 | V4 | V5 | V6 | V7 | V3_1 | V3_2 | V3_3 | V3_4 | intercept | |
---|---|---|---|---|---|---|---|---|---|---|
404 | -0.483177 | -0.427204 | 1.880619 | -1.073405 | 1.114367 | True | False | False | False | 1 |
63 | -0.357059 | -0.427204 | -1.078119 | -1.073405 | 1.114367 | False | True | False | False | 1 |
34 | 1.893073 | -0.427204 | 0.284072 | -1.073405 | -0.896089 | False | False | False | True | 1 |
33 | 0.642658 | -0.427204 | -1.136708 | 0.930284 | 1.114367 | False | False | False | True | 1 |
583 | 1.142516 | -0.427204 | -1.136708 | -1.073405 | 1.114367 | True | False | False | False | 1 |
# 1. 确定需要转换的布尔列
bool_cols = ['V3_1', 'V3_2', 'V3_3', 'V3_4']
# 2. 将这些列从布尔型转换为整数型 (True -> 1, False -> 0)
X_train[bool_cols] = X_train[bool_cols].astype(int)
X_test[bool_cols] = X_test[bool_cols].astype(int)
y_train.head()
404 1
63 0
34 0
33 0
583 0
Name: V1, dtype: int64
5. 使用statsmodels建立二元Logistic回归算法模型
5.1 使用statsmodels建立二元Logistic回归算法模型
statsmodels
是一个Python库,它提供了许多用于统计建模、统计测试以及数据探索的工具。该库专注于为用户提供经典的统计方法,包括线性回归、广义线性模型、时间序列分析等。
model = sm.Logit(y_train, X_train)
results = model.fit()
results.params
Optimization terminated successfully.
Current function value: 0.478264
Iterations 6
V2 -0.364992
V4 0.026051
V5 0.999300
V6 -0.187733
V7 0.059041
V3_1 -0.521205
V3_2 -0.832842
V3_3 0.103559
V3_4 0.097942
intercept -0.644774
dtype: float64
results.summary()
Dep. Variable: | V1 | No. Observations: | 490 |
---|---|---|---|
Model: | Logit | Df Residuals: | 480 |
Method: | MLE | Df Model: | 9 |
Date: | Sat, 27 Sep 2025 | Pseudo R-squ.: | 0.1792 |
Time: | 10:43:33 | Log-Likelihood: | -234.35 |
converged: | True | LL-Null: | -285.50 |
Covariance Type: | nonrobust | LLR p-value: | 5.394e-18 |
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
V2 | -0.3650 | 0.116 | -3.139 | 0.002 | -0.593 | -0.137 |
V4 | 0.0261 | 0.110 | 0.238 | 0.812 | -0.189 | 0.241 |
V5 | 0.9993 | 0.122 | 8.167 | 0.000 | 0.759 | 1.239 |
V6 | -0.1877 | 0.116 | -1.616 | 0.106 | -0.415 | 0.040 |
V7 | 0.0590 | 0.116 | 0.511 | 0.610 | -0.168 | 0.286 |
V3_1 | -0.5212 | 1.168 | -0.446 | 0.656 | -2.811 | 1.769 |
V3_2 | -0.8328 | 1.161 | -0.717 | 0.473 | -3.109 | 1.443 |
V3_3 | 0.1036 | 1.236 | 0.084 | 0.933 | -2.319 | 2.526 |
V3_4 | 0.0979 | 1.187 | 0.082 | 0.934 | -2.229 | 2.425 |
intercept | -0.6448 | 1.145 | -0.563 | 0.573 | -2.889 | 1.600 |
# 以几率比(Odds ratio)的形式输出二元Logistic回归模型的系数值
np.exp(results.params)
V2 0.694203
V4 1.026393
V5 2.716381
V6 0.828836
V7 1.060819
V3_1 0.593805
V3_2 0.434812
V3_3 1.109111
V3_4 1.102899
intercept 0.524781
dtype: float64
变量 | 几率比 (OR) | 几率变化 | 解释 (购买倾向) |
---|---|---|---|
V5 | 2.716 | 增加 171.6% | 最强正向影响。V5 每增加 1 单位,客户购买的几率增加约 172%。 |
V2 | 0.694 | 减少 30.6% | 显著负向影响。V2 每增加 1 单位,客户购买的几率减少约 31%。 |
V7 | 1.061 | 增加 6.1% | 微弱的正向影响。 |
V4 | 1.026 | 增加 2.6% | 几乎无影响。 |
V6 | 0.829 | 减少 17.1% | 较弱的负向影响。 |
margeff = results.get_margeff()
margeff.summary()
Dep. Variable: | V1 |
---|---|
Method: | dydx |
At: | overall |
dy/dx | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
V2 | -0.0565 | 0.017 | -3.235 | 0.001 | -0.091 | -0.022 |
V4 | 0.0040 | 0.017 | 0.238 | 0.812 | -0.029 | 0.037 |
V5 | 0.1546 | 0.014 | 10.901 | 0.000 | 0.127 | 0.182 |
V6 | -0.0290 | 0.018 | -1.629 | 0.103 | -0.064 | 0.006 |
V7 | 0.0091 | 0.018 | 0.511 | 0.609 | -0.026 | 0.044 |
V3_1 | -0.0806 | 0.181 | -0.446 | 0.655 | -0.435 | 0.274 |
V3_2 | -0.1289 | 0.179 | -0.718 | 0.473 | -0.481 | 0.223 |
V3_3 | 0.0160 | 0.191 | 0.084 | 0.933 | -0.359 | 0.391 |
V3_4 | 0.0152 | 0.184 | 0.083 | 0.934 | -0.345 | 0.375 |
5.1 计算训练误差
table = results.pred_table()
table
array([[334., 24.],
[ 86., 46.]])
# 计算模型的准确率
Accuracy = (table[0, 0] + table[1, 1]) / np.sum(table)
Accuracy
0.7755102040816326
# 计算模型的错误率
Error_rate = 1 - Accuracy
Error_rate
0.22448979591836737
# 计算模型的精确率
precision = table[1, 1] / (table[0, 1] + table[1, 1])
precision
0.6571428571428571
# 计算模型的召回率
recall = table[1, 1] / (table[1, 0] + table[1, 1])
recall
0.3484848484848485
5.3 计算测试误差
prob = results.predict(X_test)
pred = (prob >= 0.5)
table = pd.crosstab(y_test, pred, colnames=['Predicted'])
table
Predicted | False | True |
---|---|---|
V1 | ||
0 | 144 | 15 |
1 | 34 | 17 |
table = np.array(table)
Accuracy = (table[0, 0] + table[1, 1]) / np.sum(table)
Accuracy
0.7666666666666667
Error_rate = 1 - Accuracy
Error_rate
0.23333333333333328
precision = table[1, 1] / (table[0, 1] + table[1, 1])
precision
0.53125
recall = table[1, 1] / (table[1, 0] + table[1, 1])
recall
0.3333333333333333
6 使用sklearn建立二元Logistic回归算法模型
model = LogisticRegression(C=1e10, fit_intercept=True)
model.fit(X_train, y_train)
print("训练样本预测准确率: {:.3f}".format(model.score(X_train, y_train)))
print("测试样本预测准确率: {:.3f}".format(model.score(X_test, y_test)))
训练样本预测准确率: 0.778
测试样本预测准确率: 0.767
model.coef_
array([[-0.36499569, 0.02606894, 0.99933449, -0.18780027, 0.05900235,
-0.52126282, -0.83295411, 0.10357227, 0.09778604, -0.32232961]])
predict_target = model.predict(X_test)
predict_target
array([0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
predict_target_prob = model.predict_proba(X_test)
predict_target_prob
array([[0.51763559, 0.48236441],
[0.51629213, 0.48370787],
[0.91085971, 0.08914029],
[0.80692919, 0.19307081],
[0.46592783, 0.53407217],
[0.63140839, 0.36859161],
[0.13433822, 0.86566178],
[0.88889992, 0.11110008],
[0.82062785, 0.17937215],
[0.76965345, 0.23034655],
[0.28261318, 0.71738682],
[0.35834838, 0.64165162],
[0.86334216, 0.13665784],
[0.83607065, 0.16392935],
[0.8698404 , 0.1301596 ],
[0.49355146, 0.50644854],
[0.91191593, 0.08808407],
[0.62518094, 0.37481906],
[0.77131462, 0.22868538],
[0.8886198 , 0.1113802 ],
[0.89276882, 0.10723118],
[0.7414543 , 0.2585457 ],
[0.8080439 , 0.1919561 ],
[0.48794502, 0.51205498],
[0.90765422, 0.09234578],
[0.8010581 , 0.1989419 ],
[0.82582916, 0.17417084],
[0.679377 , 0.320623 ],
[0.82005153, 0.17994847],
[0.88156376, 0.11843624],
[0.79245504, 0.20754496],
[0.93622636, 0.06377364],
[0.78685809, 0.21314191],
[0.85812394, 0.14187606],
[0.642984 , 0.357016 ],
[0.64285092, 0.35714908],
[0.90753656, 0.09246344],
[0.64783214, 0.35216786],
[0.85586175, 0.14413825],
[0.3797633 , 0.6202367 ],
[0.79330016, 0.20669984],
[0.63976419, 0.36023581],
[0.37634959, 0.62365041],
[0.91948825, 0.08051175],
[0.66908071, 0.33091929],
[0.92954157, 0.07045843],
[0.8075017 , 0.1924983 ],
[0.43342784, 0.56657216],
[0.90516397, 0.09483603],
[0.92356806, 0.07643194],
[0.80544403, 0.19455597],
[0.48734119, 0.51265881],
[0.85002795, 0.14997205],
[0.79957494, 0.20042506],
[0.76162742, 0.23837258],
[0.73278302, 0.26721698],
[0.8944985 , 0.1055015 ],
[0.9133222 , 0.0866778 ],
[0.85281039, 0.14718961],
[0.89742801, 0.10257199],
[0.95215385, 0.04784615],
[0.93748723, 0.06251277],
[0.93879853, 0.06120147],
[0.63699059, 0.36300941],
[0.78121681, 0.21878319],
[0.88156762, 0.11843238],
[0.65374122, 0.34625878],
[0.57162573, 0.42837427],
[0.93968873, 0.06031127],
[0.90585719, 0.09414281],
[0.37448456, 0.62551544],
[0.93559087, 0.06440913],
[0.91715311, 0.08284689],
[0.84468944, 0.15531056],
[0.76426803, 0.23573197],
[0.93394464, 0.06605536],
[0.87272681, 0.12727319],
[0.83415758, 0.16584242],
[0.04009461, 0.95990539],
[0.91245489, 0.08754511],
[0.67711562, 0.32288438],
[0.86259866, 0.13740134],
[0.73356674, 0.26643326],
[0.61847045, 0.38152955],
[0.91366999, 0.08633001],
[0.63472297, 0.36527703],
[0.10117662, 0.89882338],
[0.80878858, 0.19121142],
[0.80824599, 0.19175401],
[0.92755529, 0.07244471],
[0.83357155, 0.16642845],
[0.76159487, 0.23840513],
[0.91049177, 0.08950823],
[0.606099 , 0.393901 ],
[0.85053425, 0.14946575],
[0.74102107, 0.25897893],
[0.63458652, 0.36541348],
[0.91207684, 0.08792316],
[0.85542491, 0.14457509],
[0.93039815, 0.06960185],
[0.70341192, 0.29658808],
[0.58131721, 0.41868279],
[0.32371423, 0.67628577],
[0.80355132, 0.19644868],
[0.79605469, 0.20394531],
[0.88424795, 0.11575205],
[0.61076991, 0.38923009],
[0.35058916, 0.64941084],
[0.93603506, 0.06396494],
[0.88874086, 0.11125914],
[0.88324437, 0.11675563],
[0.0515678 , 0.9484322 ],
[0.8968454 , 0.1031546 ],
[0.6683395 , 0.3316605 ],
[0.35755575, 0.64244425],
[0.79999772, 0.20000228],
[0.47403203, 0.52596797],
[0.88244952, 0.11755048],
[0.50049718, 0.49950282],
[0.73810985, 0.26189015],
[0.59322973, 0.40677027],
[0.96687806, 0.03312194],
[0.83244493, 0.16755507],
[0.63821928, 0.36178072],
[0.94857156, 0.05142844],
[0.9408889 , 0.0591111 ],
[0.85223514, 0.14776486],
[0.91832346, 0.08167654],
[0.58065592, 0.41934408],
[0.51597658, 0.48402342],
[0.62239748, 0.37760252],
[0.65539784, 0.34460216],
[0.88421676, 0.11578324],
[0.8138028 , 0.1861972 ],
[0.8169248 , 0.1830752 ],
[0.94012532, 0.05987468],
[0.27994632, 0.72005368],
[0.70296231, 0.29703769],
[0.89036651, 0.10963349],
[0.95551123, 0.04448877],
[0.40620528, 0.59379472],
[0.91089592, 0.08910408],
[0.83359661, 0.16640339],
[0.71691635, 0.28308365],
[0.70373702, 0.29626298],
[0.41249923, 0.58750077],
[0.81253331, 0.18746669],
[0.90378517, 0.09621483],
[0.75770748, 0.24229252],
[0.67206838, 0.32793162],
[0.95326391, 0.04673609],
[0.65161348, 0.34838652],
[0.87662762, 0.12337238],
[0.90589838, 0.09410162],
[0.26063 , 0.73937 ],
[0.64948499, 0.35051501],
[0.9496182 , 0.0503818 ],
[0.62115565, 0.37884435],
[0.95081659, 0.04918341],
[0.83680347, 0.16319653],
[0.64476694, 0.35523306],
[0.26685784, 0.73314216],
[0.8867543 , 0.1132457 ],
[0.62056352, 0.37943648],
[0.88706933, 0.11293067],
[0.41991738, 0.58008262],
[0.93257236, 0.06742764],
[0.66353464, 0.33646536],
[0.9437626 , 0.0562374 ],
[0.22202805, 0.77797195],
[0.87305977, 0.12694023],
[0.93721479, 0.06278521],
[0.59524246, 0.40475754],
[0.30004369, 0.69995631],
[0.92634292, 0.07365708],
[0.85470288, 0.14529712],
[0.87197324, 0.12802676],
[0.92257891, 0.07742109],
[0.83035449, 0.16964551],
[0.80864914, 0.19135086],
[0.69348381, 0.30651619],
[0.52604653, 0.47395347],
[0.83915518, 0.16084482],
[0.92618187, 0.07381813],
[0.44448443, 0.55551557],
[0.85883378, 0.14116622],
[0.53950342, 0.46049658],
[0.84912054, 0.15087946],
[0.85258155, 0.14741845],
[0.443867 , 0.556133 ],
[0.89995135, 0.10004865],
[0.42192742, 0.57807258],
[0.94839723, 0.05160277],
[0.77554517, 0.22445483],
[0.81734555, 0.18265445],
[0.91186786, 0.08813214],
[0.83354801, 0.16645199],
[0.417775 , 0.582225 ],
[0.88765343, 0.11234657],
[0.81629596, 0.18370404],
[0.4718842 , 0.5281158 ],
[0.37422986, 0.62577014],
[0.60405928, 0.39594072],
[0.87033048, 0.12966952],
[0.75082848, 0.24917152],
[0.83975351, 0.16024649],
[0.88324818, 0.11675182],
[0.89606241, 0.10393759],
[0.84257166, 0.15742834],
[0.90915068, 0.09084932]])
predict_target_prob_lr = predict_target_prob[:, 1]
df = pd.DataFrame({'prob': predict_target_prob_lr, 'target': predict_target, 'labels': list(y_test)})
df.head()
prob | target | labels | |
---|---|---|---|
0 | 0.482364 | 0 | 0 |
1 | 0.483708 | 0 | 0 |
2 | 0.089140 | 0 | 0 |
3 | 0.193071 | 0 | 0 |
4 | 0.534072 | 1 | 0 |
print('预测正确总数:')
print(sum(predict_target==y_test))
预测正确总数:
161
print('训练样本:')
predict_Target = model.predict(X_train)
print(metrics.classification_report(y_train, predict_Target))
print(metrics.confusion_matrix(y_train, predict_Target))
训练样本:
precision recall f1-score support
0 0.80 0.93 0.86 358
1 0.66 0.36 0.46 132
accuracy 0.78 490
macro avg 0.73 0.64 0.66 490
weighted avg 0.76 0.78 0.75 490
[[334 24]
[ 85 47]]
print('测试样本:')
print(metrics.classification_report(y_test, predict_target))
print(metrics.confusion_matrix(y_test, predict_target))
测试样本:
precision recall f1-score support
0 0.81 0.91 0.85 159
1 0.53 0.33 0.41 51
accuracy 0.77 210
macro avg 0.67 0.62 0.63 210
weighted avg 0.74 0.77 0.75 210
[[144 15]
[ 34 17]]
7 特征变量重要性水平分析
lr1 = [i for item in model.coef_ for i in item]
lr1 = np.array(lr1)
lr1
array([-0.36499569, 0.02606894, 0.99933449, -0.18780027, 0.05900235,
-0.52126282, -0.83295411, 0.10357227, 0.09778604, -0.32232961])
feature = list(X.columns)
feature
['V2', 'V4', 'V5', 'V6', 'V7', 'V3_1', 'V3_2', 'V3_3', 'V3_4', 'intercept']
dic={}
for i in range(len(feature)):
dic.update({feature[i]: lr1[i]})
dic
{'V2': -0.36499568695644263,
'V4': 0.026068941454863492,
'V5': 0.9993344932608373,
'V6': -0.18780026510906955,
'V7': 0.05900234918715404,
'V3_1': -0.5212628192766355,
'V3_2': -0.8329541134834083,
'V3_3': 0.10357227463321901,
'V3_4': 0.09778604005038755,
'intercept': -0.32232961040511104}
df = df.reset_index().rename(columns={'index':'特征'})
df
特征 | prob | target | labels | |
---|---|---|---|---|
0 | 0 | 0.482364 | 0 | 0 |
1 | 1 | 0.483708 | 0 | 0 |
2 | 2 | 0.089140 | 0 | 0 |
3 | 3 | 0.193071 | 0 | 0 |
4 | 4 | 0.534072 | 1 | 0 |
5 | 5 | 0.368592 | 0 | 0 |
6 | 6 | 0.865662 | 1 | 0 |
7 | 7 | 0.111100 | 0 | 0 |
8 | 8 | 0.179372 | 0 | 0 |
9 | 9 | 0.230347 | 0 | 0 |
10 | 10 | 0.717387 | 1 | 1 |
11 | 11 | 0.641652 | 1 | 1 |
12 | 12 | 0.136658 | 0 | 0 |
13 | 13 | 0.163929 | 0 | 0 |
14 | 14 | 0.130160 | 0 | 0 |
15 | 15 | 0.506449 | 1 | 0 |
16 | 16 | 0.088084 | 0 | 0 |
17 | 17 | 0.374819 | 0 | 0 |
18 | 18 | 0.228685 | 0 | 0 |
19 | 19 | 0.111380 | 0 | 0 |
20 | 20 | 0.107231 | 0 | 0 |
21 | 21 | 0.258546 | 0 | 1 |
22 | 22 | 0.191956 | 0 | 0 |
23 | 23 | 0.512055 | 1 | 0 |
24 | 24 | 0.092346 | 0 | 1 |
25 | 25 | 0.198942 | 0 | 1 |
26 | 26 | 0.174171 | 0 | 0 |
27 | 27 | 0.320623 | 0 | 0 |
28 | 28 | 0.179948 | 0 | 0 |
29 | 29 | 0.118436 | 0 | 0 |
30 | 30 | 0.207545 | 0 | 0 |
31 | 31 | 0.063774 | 0 | 0 |
32 | 32 | 0.213142 | 0 | 0 |
33 | 33 | 0.141876 | 0 | 0 |
34 | 34 | 0.357016 | 0 | 0 |
35 | 35 | 0.357149 | 0 | 1 |
36 | 36 | 0.092463 | 0 | 0 |
37 | 37 | 0.352168 | 0 | 0 |
38 | 38 | 0.144138 | 0 | 0 |
39 | 39 | 0.620237 | 1 | 1 |
40 | 40 | 0.206700 | 0 | 0 |
41 | 41 | 0.360236 | 0 | 1 |
42 | 42 | 0.623650 | 1 | 0 |
43 | 43 | 0.080512 | 0 | 0 |
44 | 44 | 0.330919 | 0 | 0 |
45 | 45 | 0.070458 | 0 | 0 |
46 | 46 | 0.192498 | 0 | 0 |
47 | 47 | 0.566572 | 1 | 0 |
48 | 48 | 0.094836 | 0 | 0 |
49 | 49 | 0.076432 | 0 | 0 |
50 | 50 | 0.194556 | 0 | 0 |
51 | 51 | 0.512659 | 1 | 1 |
52 | 52 | 0.149972 | 0 | 1 |
53 | 53 | 0.200425 | 0 | 0 |
54 | 54 | 0.238373 | 0 | 0 |
55 | 55 | 0.267217 | 0 | 1 |
56 | 56 | 0.105502 | 0 | 0 |
57 | 57 | 0.086678 | 0 | 0 |
58 | 58 | 0.147190 | 0 | 0 |
59 | 59 | 0.102572 | 0 | 0 |
60 | 60 | 0.047846 | 0 | 1 |
61 | 61 | 0.062513 | 0 | 0 |
62 | 62 | 0.061201 | 0 | 0 |
63 | 63 | 0.363009 | 0 | 0 |
64 | 64 | 0.218783 | 0 | 0 |
65 | 65 | 0.118432 | 0 | 0 |
66 | 66 | 0.346259 | 0 | 0 |
67 | 67 | 0.428374 | 0 | 0 |
68 | 68 | 0.060311 | 0 | 0 |
69 | 69 | 0.094143 | 0 | 0 |
70 | 70 | 0.625515 | 1 | 0 |
71 | 71 | 0.064409 | 0 | 1 |
72 | 72 | 0.082847 | 0 | 0 |
73 | 73 | 0.155311 | 0 | 0 |
74 | 74 | 0.235732 | 0 | 0 |
75 | 75 | 0.066055 | 0 | 0 |
76 | 76 | 0.127273 | 0 | 0 |
77 | 77 | 0.165842 | 0 | 0 |
78 | 78 | 0.959905 | 1 | 1 |
79 | 79 | 0.087545 | 0 | 0 |
80 | 80 | 0.322884 | 0 | 1 |
81 | 81 | 0.137401 | 0 | 0 |
82 | 82 | 0.266433 | 0 | 0 |
83 | 83 | 0.381530 | 0 | 0 |
84 | 84 | 0.086330 | 0 | 0 |
85 | 85 | 0.365277 | 0 | 0 |
86 | 86 | 0.898823 | 1 | 1 |
87 | 87 | 0.191211 | 0 | 0 |
88 | 88 | 0.191754 | 0 | 0 |
89 | 89 | 0.072445 | 0 | 0 |
90 | 90 | 0.166428 | 0 | 0 |
91 | 91 | 0.238405 | 0 | 0 |
92 | 92 | 0.089508 | 0 | 0 |
93 | 93 | 0.393901 | 0 | 0 |
94 | 94 | 0.149466 | 0 | 0 |
95 | 95 | 0.258979 | 0 | 1 |
96 | 96 | 0.365413 | 0 | 0 |
97 | 97 | 0.087923 | 0 | 1 |
98 | 98 | 0.144575 | 0 | 0 |
99 | 99 | 0.069602 | 0 | 0 |
100 | 100 | 0.296588 | 0 | 0 |
101 | 101 | 0.418683 | 0 | 0 |
102 | 102 | 0.676286 | 1 | 0 |
103 | 103 | 0.196449 | 0 | 0 |
104 | 104 | 0.203945 | 0 | 0 |
105 | 105 | 0.115752 | 0 | 0 |
106 | 106 | 0.389230 | 0 | 0 |
107 | 107 | 0.649411 | 1 | 1 |
108 | 108 | 0.063965 | 0 | 0 |
109 | 109 | 0.111259 | 0 | 0 |
110 | 110 | 0.116756 | 0 | 0 |
111 | 111 | 0.948432 | 1 | 1 |
112 | 112 | 0.103155 | 0 | 1 |
113 | 113 | 0.331660 | 0 | 0 |
114 | 114 | 0.642444 | 1 | 0 |
115 | 115 | 0.200002 | 0 | 0 |
116 | 116 | 0.525968 | 1 | 1 |
117 | 117 | 0.117550 | 0 | 0 |
118 | 118 | 0.499503 | 0 | 1 |
119 | 119 | 0.261890 | 0 | 0 |
120 | 120 | 0.406770 | 0 | 1 |
121 | 121 | 0.033122 | 0 | 0 |
122 | 122 | 0.167555 | 0 | 0 |
123 | 123 | 0.361781 | 0 | 0 |
124 | 124 | 0.051428 | 0 | 0 |
125 | 125 | 0.059111 | 0 | 0 |
126 | 126 | 0.147765 | 0 | 0 |
127 | 127 | 0.081677 | 0 | 0 |
128 | 128 | 0.419344 | 0 | 1 |
129 | 129 | 0.484023 | 0 | 1 |
130 | 130 | 0.377603 | 0 | 1 |
131 | 131 | 0.344602 | 0 | 0 |
132 | 132 | 0.115783 | 0 | 0 |
133 | 133 | 0.186197 | 0 | 1 |
134 | 134 | 0.183075 | 0 | 0 |
135 | 135 | 0.059875 | 0 | 1 |
136 | 136 | 0.720054 | 1 | 1 |
137 | 137 | 0.297038 | 0 | 0 |
138 | 138 | 0.109633 | 0 | 0 |
139 | 139 | 0.044489 | 0 | 0 |
140 | 140 | 0.593795 | 1 | 1 |
141 | 141 | 0.089104 | 0 | 0 |
142 | 142 | 0.166403 | 0 | 0 |
143 | 143 | 0.283084 | 0 | 0 |
144 | 144 | 0.296263 | 0 | 0 |
145 | 145 | 0.587501 | 1 | 1 |
146 | 146 | 0.187467 | 0 | 1 |
147 | 147 | 0.096215 | 0 | 0 |
148 | 148 | 0.242293 | 0 | 0 |
149 | 149 | 0.327932 | 0 | 1 |
150 | 150 | 0.046736 | 0 | 0 |
151 | 151 | 0.348387 | 0 | 1 |
152 | 152 | 0.123372 | 0 | 0 |
153 | 153 | 0.094102 | 0 | 0 |
154 | 154 | 0.739370 | 1 | 1 |
155 | 155 | 0.350515 | 0 | 0 |
156 | 156 | 0.050382 | 0 | 0 |
157 | 157 | 0.378844 | 0 | 1 |
158 | 158 | 0.049183 | 0 | 0 |
159 | 159 | 0.163197 | 0 | 0 |
160 | 160 | 0.355233 | 0 | 0 |
161 | 161 | 0.733142 | 1 | 1 |
162 | 162 | 0.113246 | 0 | 0 |
163 | 163 | 0.379436 | 0 | 1 |
164 | 164 | 0.112931 | 0 | 0 |
165 | 165 | 0.580083 | 1 | 0 |
166 | 166 | 0.067428 | 0 | 0 |
167 | 167 | 0.336465 | 0 | 1 |
168 | 168 | 0.056237 | 0 | 0 |
169 | 169 | 0.777972 | 1 | 0 |
170 | 170 | 0.126940 | 0 | 0 |
171 | 171 | 0.062785 | 0 | 0 |
172 | 172 | 0.404758 | 0 | 0 |
173 | 173 | 0.699956 | 1 | 0 |
174 | 174 | 0.073657 | 0 | 0 |
175 | 175 | 0.145297 | 0 | 1 |
176 | 176 | 0.128027 | 0 | 0 |
177 | 177 | 0.077421 | 0 | 0 |
178 | 178 | 0.169646 | 0 | 0 |
179 | 179 | 0.191351 | 0 | 0 |
180 | 180 | 0.306516 | 0 | 1 |
181 | 181 | 0.473953 | 0 | 0 |
182 | 182 | 0.160845 | 0 | 0 |
183 | 183 | 0.073818 | 0 | 0 |
184 | 184 | 0.555516 | 1 | 0 |
185 | 185 | 0.141166 | 0 | 0 |
186 | 186 | 0.460497 | 0 | 1 |
187 | 187 | 0.150879 | 0 | 0 |
188 | 188 | 0.147418 | 0 | 0 |
189 | 189 | 0.556133 | 1 | 1 |
190 | 190 | 0.100049 | 0 | 0 |
191 | 191 | 0.578073 | 1 | 1 |
192 | 192 | 0.051603 | 0 | 0 |
193 | 193 | 0.224455 | 0 | 0 |
194 | 194 | 0.182654 | 0 | 0 |
195 | 195 | 0.088132 | 0 | 0 |
196 | 196 | 0.166452 | 0 | 1 |
197 | 197 | 0.582225 | 1 | 1 |
198 | 198 | 0.112347 | 0 | 0 |
199 | 199 | 0.183704 | 0 | 1 |
200 | 200 | 0.528116 | 1 | 0 |
201 | 201 | 0.625770 | 1 | 0 |
202 | 202 | 0.395941 | 0 | 1 |
203 | 203 | 0.129670 | 0 | 1 |
204 | 204 | 0.249172 | 0 | 0 |
205 | 205 | 0.160246 | 0 | 1 |
206 | 206 | 0.116752 | 0 | 0 |
207 | 207 | 0.103938 | 0 | 0 |
208 | 208 | 0.157428 | 0 | 0 |
209 | 209 | 0.090849 | 0 | 0 |
df = pd.DataFrame.from_dict(dic, orient='index', columns=['权重'])
df
权重 | |
---|---|
V2 | -0.364996 |
V4 | 0.026069 |
V5 | 0.999334 |
V6 | -0.187800 |
V7 | 0.059002 |
V3_1 | -0.521263 |
V3_2 | -0.832954 |
V3_3 | 0.103572 |
V3_4 | 0.097786 |
intercept | -0.322330 |
df = df.reset_index().rename(columns={'index':'特征'})
df
特征 | 权重 | |
---|---|---|
0 | V2 | -0.364996 |
1 | V4 | 0.026069 |
2 | V5 | 0.999334 |
3 | V6 | -0.187800 |
4 | V7 | 0.059002 |
5 | V3_1 | -0.521263 |
6 | V3_2 | -0.832954 |
7 | V3_3 | 0.103572 |
8 | V3_4 | 0.097786 |
9 | intercept | -0.322330 |
# 按照权重排序
df = df.sort_values(by='权重',ascending=False)
df
特征 | 权重 | |
---|---|---|
2 | V5 | 0.999334 |
7 | V3_3 | 0.103572 |
8 | V3_4 | 0.097786 |
4 | V7 | 0.059002 |
1 | V4 | 0.026069 |
3 | V6 | -0.187800 |
9 | intercept | -0.322330 |
0 | V2 | -0.364996 |
5 | V3_1 | -0.521263 |
6 | V3_2 | -0.832954 |
data_hight = df['权重'].values.tolist()
data_hight
[0.9993344932608373,
0.10357227463321901,
0.09778604005038755,
0.05900234918715404,
0.026068941454863492,
-0.18780026510906955,
-0.32232961040511104,
-0.36499568695644263,
-0.5212628192766355,
-0.8329541134834083]
data_x = df['特征'].values.tolist()
data_x
['V5', 'V3_3', 'V3_4', 'V7', 'V4', 'V6', 'intercept', 'V2', 'V3_1', 'V3_2']
font = {'size': 7}
sns.set(font_scale=1.2)
plt.rc('font')
plt.figure(figsize=(6,6))
plt.barh(range(len(data_x)), data_hight, color='#6699CC')
plt.yticks(range(len(data_x)),data_x,fontsize=12)
plt.tick_params(labelsize=12)
plt.xlabel('Feature importance',fontsize=14)
plt.title("LR feature importance analysis",fontsize = 14)
plt.show()
8 绘制ROC曲线,计算AUC值
RocCurveDisplay.from_estimator(model, X_test, y_test)
x = np.linspace(0, 1, 100)
plt.plot(x, x, 'k--', linewidth=1)
plt.title('ROC Curve (Test Set)')
Text(0.5, 1.0, 'ROC Curve (Test Set)')
9 计算科恩kappa得分
科恩kappa得分(Cohen’s kappa score)是一种用于衡量两个评分者之间一致性的统计指标。它考虑了由于随机因素导致的一致性,比简单的准确率更能反映评分者之间的真实一致性。该指标的值范围在 -1 到 1 之间:
- -1 表示完全不一致。
- 0 表示一致性等同于随机猜测。
- 1 表示完全一致。
cohen_kappa_score(y_test, pred)
0.27361287590004235