| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 
 | UNet2DConditionModel((conv_in): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_proj): Timesteps()
 (time_embedding): TimestepEmbedding(
 (linear_1): Linear(in_features=320, out_features=1280, bias=True)
 (act): SiLU()
 (linear_2): Linear(in_features=1280, out_features=1280, bias=True)
 )
 (add_time_proj): Timesteps()
 (add_embedding): TimestepEmbedding(
 (linear_1): Linear(in_features=2816, out_features=1280, bias=True)
 (act): SiLU()
 (linear_2): Linear(in_features=1280, out_features=1280, bias=True)
 )
 (down_blocks) : ModuleList(
 (0): DownBlock2D(
 (resnets): ModuleList(
 (0-1): 2 x ResnetBlock2D(
 (norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
 (conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
 (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 )
 )
 (downsamplers): ModuleList(
 (0): Downsample2D(
 (conv): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
 )
 )
 )
 (1): CrossAttnDownBlock2D(
 (attentions): ModuleList(
 (0-1): 2 x Transformer2DModel(
 (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
 (proj_in): Linear(in_features=640, out_features=640, bias=True)
 (transformer_blocks): ModuleList(
 (0-1): 2 x BasicTransformerBlock(
 (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
 (attn1): Attention(
 (to_q): Linear(in_features=640, out_features=640, bias=False)
 (to_k): Linear(in_features=640, out_features=640, bias=False)
 (to_v): Linear(in_features=640, out_features=640, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=640, out_features=640, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
 (attn2): Attention(
 (to_q): Linear(in_features=640, out_features=640, bias=False)
 (to_k): Linear(in_features=2048, out_features=640, bias=False)
 (to_v): Linear(in_features=2048, out_features=640, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=640, out_features=640, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
 (ff): FeedForward(
 (net): ModuleList(
 (0): GEGLU(
 (proj): Linear(in_features=640, out_features=5120, bias=True)
 )
 (1): Dropout(p=0.0, inplace=False)
 (2): Linear(in_features=2560, out_features=640, bias=True)
 )
 )
 )
 )
 (proj_out): Linear(in_features=640, out_features=640, bias=True)
 )
 )
 (resnets): ModuleList(
 (0): ResnetBlock2D(
 (norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
 (conv1): Conv2d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
 (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(320, 640, kernel_size=(1, 1), stride=(1, 1))
 )
 (1): ResnetBlock2D(
 (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
 (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
 (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 )
 )
 (downsamplers): ModuleList(
 (0): Downsample2D(
 (conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
 )
 )
 )
 (2): CrossAttnDownBlock2D(
 (attentions): ModuleList(
 (0-1): 2 x Transformer2DModel(
 (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
 (proj_in): Linear(in_features=1280, out_features=1280, bias=True)
 (transformer_blocks): ModuleList(
 (0-9): 10 x BasicTransformerBlock(
 (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (attn1): Attention(
 (to_q): Linear(in_features=1280, out_features=1280, bias=False)
 (to_k): Linear(in_features=1280, out_features=1280, bias=False)
 (to_v): Linear(in_features=1280, out_features=1280, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=1280, out_features=1280, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (attn2): Attention(
 (to_q): Linear(in_features=1280, out_features=1280, bias=False)
 (to_k): Linear(in_features=2048, out_features=1280, bias=False)
 (to_v): Linear(in_features=2048, out_features=1280, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=1280, out_features=1280, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (ff): FeedForward(
 (net): ModuleList(
 (0): GEGLU(
 (proj): Linear(in_features=1280, out_features=10240, bias=True)
 )
 (1): Dropout(p=0.0, inplace=False)
 (2): Linear(in_features=5120, out_features=1280, bias=True)
 )
 )
 )
 )
 (proj_out): Linear(in_features=1280, out_features=1280, bias=True)
 )
 )
 (resnets): ModuleList(
 (0): ResnetBlock2D(
 (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
 (conv1): Conv2d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
 (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(640, 1280, kernel_size=(1, 1), stride=(1, 1))
 )
 (1): ResnetBlock2D(
 (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
 (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 )
 )
 )
 )
 (up_blocks) : ModuleList(
 (0): CrossAttnUpBlock2D(
 (attentions): ModuleList(
 (0-2): 3 x Transformer2DModel(
 (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
 (proj_in): Linear(in_features=1280, out_features=1280, bias=True)
 (transformer_blocks): ModuleList(
 (0-9): 10 x BasicTransformerBlock(
 (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (attn1): Attention(
 (to_q): Linear(in_features=1280, out_features=1280, bias=False)
 (to_k): Linear(in_features=1280, out_features=1280, bias=False)
 (to_v): Linear(in_features=1280, out_features=1280, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=1280, out_features=1280, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (attn2): Attention(
 (to_q): Linear(in_features=1280, out_features=1280, bias=False)
 (to_k): Linear(in_features=2048, out_features=1280, bias=False)
 (to_v): Linear(in_features=2048, out_features=1280, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=1280, out_features=1280, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (ff): FeedForward(
 (net): ModuleList(
 (0): GEGLU(
 (proj): Linear(in_features=1280, out_features=10240, bias=True)
 )
 (1): Dropout(p=0.0, inplace=False)
 (2): Linear(in_features=5120, out_features=1280, bias=True)
 )
 )
 )
 )
 (proj_out): Linear(in_features=1280, out_features=1280, bias=True)
 )
 )
 (resnets): ModuleList(
 (0-1): 2 x ResnetBlock2D(
 (norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
 (conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
 (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
 )
 (2): ResnetBlock2D(
 (norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
 (conv1): Conv2d(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
 (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(1920, 1280, kernel_size=(1, 1), stride=(1, 1))
 )
 )
 (upsamplers): ModuleList(
 (0): Upsample2D(
 (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 )
 )
 )
 (1): CrossAttnUpBlock2D(
 (attentions): ModuleList(
 (0-2): 3 x Transformer2DModel(
 (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
 (proj_in): Linear(in_features=640, out_features=640, bias=True)
 (transformer_blocks): ModuleList(
 (0-1): 2 x BasicTransformerBlock(
 (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
 (attn1): Attention(
 (to_q): Linear(in_features=640, out_features=640, bias=False)
 (to_k): Linear(in_features=640, out_features=640, bias=False)
 (to_v): Linear(in_features=640, out_features=640, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=640, out_features=640, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
 (attn2): Attention(
 (to_q): Linear(in_features=640, out_features=640, bias=False)
 (to_k): Linear(in_features=2048, out_features=640, bias=False)
 (to_v): Linear(in_features=2048, out_features=640, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=640, out_features=640, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
 (ff): FeedForward(
 (net): ModuleList(
 (0): GEGLU(
 (proj): Linear(in_features=640, out_features=5120, bias=True)
 )
 (1): Dropout(p=0.0, inplace=False)
 (2): Linear(in_features=2560, out_features=640, bias=True)
 )
 )
 )
 )
 (proj_out): Linear(in_features=640, out_features=640, bias=True)
 )
 )
 (resnets): ModuleList(
 (0): ResnetBlock2D(
 (norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
 (conv1): Conv2d(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
 (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(1920, 640, kernel_size=(1, 1), stride=(1, 1))
 )
 (1): ResnetBlock2D(
 (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (conv1): Conv2d(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
 (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(1280, 640, kernel_size=(1, 1), stride=(1, 1))
 )
 (2): ResnetBlock2D(
 (norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
 (conv1): Conv2d(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
 (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(960, 640, kernel_size=(1, 1), stride=(1, 1))
 )
 )
 (upsamplers): ModuleList(
 (0): Upsample2D(
 (conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 )
 )
 )
 (2): UpBlock2D(
 (resnets): ModuleList(
 (0): ResnetBlock2D(
 (norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
 (conv1): Conv2d(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
 (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))
 )
 (1-2): 2 x ResnetBlock2D(
 (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
 (conv1): Conv2d(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
 (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 (conv_shortcut): Conv2d(640, 320, kernel_size=(1, 1), stride=(1, 1))
 )
 )
 )
 )
 (mid_block) : UNetMidBlock2DCrossAttn(
 (attentions): ModuleList(
 (0): Transformer2DModel(
 (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
 (proj_in): Linear(in_features=1280, out_features=1280, bias=True)
 (transformer_blocks): ModuleList(
 (0-9): 10 x BasicTransformerBlock(
 (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (attn1): Attention(
 (to_q): Linear(in_features=1280, out_features=1280, bias=False)
 (to_k): Linear(in_features=1280, out_features=1280, bias=False)
 (to_v): Linear(in_features=1280, out_features=1280, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=1280, out_features=1280, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (attn2): Attention(
 (to_q): Linear(in_features=1280, out_features=1280, bias=False)
 (to_k): Linear(in_features=2048, out_features=1280, bias=False)
 (to_v): Linear(in_features=2048, out_features=1280, bias=False)
 (to_out): ModuleList(
 (0): Linear(in_features=1280, out_features=1280, bias=True)
 (1): Dropout(p=0.0, inplace=False)
 )
 )
 (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
 (ff): FeedForward(
 (net): ModuleList(
 (0): GEGLU(
 (proj): Linear(in_features=1280, out_features=10240, bias=True)
 )
 (1): Dropout(p=0.0, inplace=False)
 (2): Linear(in_features=5120, out_features=1280, bias=True)
 )
 )
 )
 )
 (proj_out): Linear(in_features=1280, out_features=1280, bias=True)
 )
 )
 (resnets): ModuleList(
 (0-1): 2 x ResnetBlock2D(
 (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
 (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
 (dropout): Dropout(p=0.0, inplace=False)
 (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (nonlinearity): SiLU()
 )
 )
 )
 (conv_norm_out): GroupNorm(32, 320, eps=1e-05, affine=True)
 (conv_act): SiLU()
 (conv_out): Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 )
 
 |