1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
| import copy import warnings from dataclasses import asdict, dataclass from typing import Callable, List, Optional
import streamlit as st import torch from torch import nn from transformers.generation.utils import (LogitsProcessorList, StoppingCriteriaList) from transformers.utils import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
logger = logging.get_logger(__name__)
@dataclass class GenerationConfig: max_length: int = 32768 top_p: float = 0.8 temperature: float = 0.8 do_sample: bool = True repetition_penalty: float = 1.005
@torch.inference_mode() def generate_interactive( model, tokenizer, prompt, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, additional_eos_token_id: Optional[int] = None, **kwargs, ): inputs = tokenizer([prompt], padding=True, return_tensors='pt') input_length = len(inputs['input_ids'][0]) for k, v in inputs.items(): inputs[k] = v.cuda() input_ids = inputs['input_ids'] _, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] if generation_config is None: generation_config = model.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) bos_token_id, eos_token_id = ( generation_config.bos_token_id, generation_config.eos_token_id, ) if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] if additional_eos_token_id is not None: eos_token_id.append(additional_eos_token_id) has_default_max_length = kwargs.get( 'max_length') is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None: warnings.warn( f"Using 'max_length''s default ({repr(generation_config.max_length)}) \ to control the generation length. " 'This behaviour is deprecated and will be removed from the \ config in v5 of Transformers -- we' ' recommend using `max_new_tokens` to control the maximum \ length of the generation.', UserWarning, ) elif generation_config.max_new_tokens is not None: generation_config.max_length = generation_config.max_new_tokens + \ input_ids_seq_length if not has_default_max_length: logger.warn( f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) " f"and 'max_length'(={generation_config.max_length}) seem to " "have been set. 'max_new_tokens' will take precedence. " 'Please refer to the documentation for more information. ' '(https://huggingface.co/docs/transformers/main/' 'en/main_classes/text_generation)', UserWarning, )
if input_ids_seq_length >= generation_config.max_length: input_ids_string = 'input_ids' logger.warning( f"Input length of {input_ids_string} is {input_ids_seq_length}, " f"but 'max_length' is set to {generation_config.max_length}. " 'This can lead to unexpected behavior. You should consider' " increasing 'max_new_tokens'.")
logits_processor = logits_processor if logits_processor is not None \ else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None \ else StoppingCriteriaList()
logits_processor = model._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, logits_processor=logits_processor, )
stopping_criteria = model._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria) logits_warper = model._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) scores = None while True: model_inputs = model.prepare_inputs_for_generation( input_ids, **model_kwargs) outputs = model( **model_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, )
next_token_logits = outputs.logits[:, -1, :]
next_token_scores = logits_processor(input_ids, next_token_logits) next_token_scores = logits_warper(input_ids, next_token_scores)
probs = nn.functional.softmax(next_token_scores, dim=-1) if generation_config.do_sample: next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(probs, dim=-1)
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) model_kwargs = model._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=False) unfinished_sequences = unfinished_sequences.mul( (min(next_tokens != i for i in eos_token_id)).long())
output_token_ids = input_ids[0].cpu().tolist() output_token_ids = output_token_ids[input_length:] for each_eos_token_id in eos_token_id: if output_token_ids[-1] == each_eos_token_id: output_token_ids = output_token_ids[:-1] response = tokenizer.decode(output_token_ids)
yield response if unfinished_sequences.max() == 0 or stopping_criteria( input_ids, scores): break
def on_btn_click(): del st.session_state.messages
@st.cache_resource def load_model(): model = (AutoModelForCausalLM.from_pretrained('/root/models/JimmyMa99/BaJie-Chat-mini', trust_remote_code=True).to( torch.bfloat16).cuda()) tokenizer = AutoTokenizer.from_pretrained('/root/models/JimmyMa99/BaJie-Chat-mini', trust_remote_code=True) return model, tokenizer
def prepare_generation_config(): with st.sidebar: max_length = st.slider('Max Length', min_value=8, max_value=32768, value=32768) top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01) temperature = st.slider('Temperature', 0.0, 1.0, 0.7, step=0.01) st.button('Clear Chat History', on_click=on_btn_click)
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
return generation_config
user_prompt = '<|im_start|>user\n{user}<|im_end|>\n' robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n' cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\ <|im_start|>assistant\n'
def combine_history(prompt): messages = st.session_state.messages meta_instruction = ('你是猪八戒,猪八戒说话幽默风趣,说话方式通常表现为直率、幽默,有时带有一点自嘲和调侃。' '你的话语中常常透露出对食物的喜爱和对安逸生活的向往,同时也显示出他机智和有时的懒惰特点。' '尽量保持回答的自然回答,当然你也可以适当穿插一些文言文,另外,书生·浦语是你的好朋友,是你的AI助手。') total_prompt = f"<s><|im_start|>system\n{meta_instruction}<|im_end|>\n" for message in messages: cur_content = message['content'] if message['role'] == 'user': cur_prompt = user_prompt.format(user=cur_content) elif message['role'] == 'robot': cur_prompt = robot_prompt.format(robot=cur_content) else: raise RuntimeError total_prompt += cur_prompt total_prompt = total_prompt + cur_query_prompt.format(user=prompt) return total_prompt
def main(): print('load model begin.') model, tokenizer = load_model() print('load model end.')
st.title('猪猪Chat-InternLM2')
generation_config = prepare_generation_config()
if 'messages' not in st.session_state: st.session_state.messages = []
for message in st.session_state.messages: with st.chat_message(message['role']): st.markdown(message['content'])
if prompt := st.chat_input('What is up?'): with st.chat_message('user'): st.markdown(prompt) real_prompt = combine_history(prompt) st.session_state.messages.append({ 'role': 'user', 'content': prompt, })
with st.chat_message('robot'): message_placeholder = st.empty() for cur_response in generate_interactive( model=model, tokenizer=tokenizer, prompt=real_prompt, additional_eos_token_id=92542, **asdict(generation_config), ): message_placeholder.markdown(cur_response + '▌') message_placeholder.markdown(cur_response) st.session_state.messages.append({ 'role': 'robot', 'content': cur_response, }) torch.cuda.empty_cache()
if __name__ == '__main__': main()
|